994 resultados para Motion classification
Resumo:
A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.
Resumo:
BACKGROUND: Little is known about the health status of prisoners in Switzerland. The aim of this study was to provide a detailed description of the health problems presented by detainees in Switzerland's largest remand prison. METHODS: In this retrospective cross-sectional study we reviewed the health records of all detainees leaving Switzerland's largest remand prison in 2007. The health problems were coded using the International Classification for Primary Care (ICPC-2). Analyses were descriptive, stratified by gender. RESULTS: A total of 2195 health records were reviewed. Mean age was 29.5 years (SD 9.5); 95% were male; 87.8% were migrants. Mean length of stay was 80 days (SD 160). Illicit drug use (40.2%) and mental health problems (32.6%) were frequent, but most of these detainees (57.6%) had more generic primary care problems, such as skin (27.0%), infectious diseases (23.5%), musculoskeletal (19.2%), injury related (18.3%), digestive (15.0%) or respiratory problems (14.0%). Furthermore, 7.9% reported exposure to violence during arrest by the police. CONCLUSION: Morbidity is high in this young, predominantly male population of detainees, in particular in relation to substance abuse. Other health problems more commonly seen in general practice are also frequent. These findings support the further development of coordinated primary care and mental health services within detention centers.
Resumo:
Skin, arteries and nerves of the upper extremities can be affected by vibration exposure. Recent advances in skin and vascular biology as well as new investigative methods, have shown that neurovascular symptoms may be due to different vascular and neurological disorders which should be differentiated if proper management is to be evaluated. Three types of vascular disorder can be observed in the vibration white finger: digital organic microangiopathy, a digital vasospastic phenomenon and arterial thrombosis in the upper extremities. An imbalance between endothelin-1 and calcitonin-gene-related peptide is probably responsible for the vasospastic phenomenon. Moreover, paresthesiae can be due to either a diffuse vibration neuropathy or a carpal tunnel syndrome. A precise diagnosis is then necessary to adapt the treatment to individual cases. A classification describing the type and severity of the vascular lesions is presented. Asymptomatic lesions are included for adequate epidemiological studies and risk assessment of vibrating tools. Monitoring of vibration exposed workers should include not only a questionnaire about symptoms, but also a clinical evaluation including diagnostic tests for the screening of early asymptomatic neurovascular injuries.
Resumo:
In this paper, we present and apply a semisupervised support vector machine based on cluster kernels for the problem of very high resolution image classification. In the proposed setting, a base kernel working with labeled samples only is deformed by a likelihood kernel encoding similarities between unlabeled examples. The resulting kernel is used to train a standard support vector machine (SVM) classifier. Experiments carried out on very high resolution (VHR) multispectral and hyperspectral images using very few labeled examples show the relevancy of the method in the context of urban image classification. Its simplicity and the small number of parameters involved make it versatile and workable by unexperimented users.
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence
Resumo:
This paper presents a complete solution for creating accurate 3D textured models from monocular video sequences. The methods are developed within the framework of sequential structure from motion, where a 3D model of the environment is maintained and updated as new visual information becomes available. The camera position is recovered by directly associating the 3D scene model with local image observations. Compared to standard structure from motion techniques, this approach decreases the error accumulation while increasing the robustness to scene occlusions and feature association failures. The obtained 3D information is used to generate high quality, composite visual maps of the scene (mosaics). The visual maps are used to create texture-mapped, realistic views of the scene
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques