957 resultados para Molecule
Resumo:
Some atomic multipoles (charges, dipoles and quadrupoles) from the Quantum Theory of Atoms in Molecules (QTAIM) and CHELPG charges are used to investigate interactions between a proton and a molecule (F2, Cl2, BF, AlF, BeO, MgO, LiH, H2CO, NH3, PH3, BF3, and CO2). Calculations were done at the B3LYP/6-311G(3d,3p) level. The main aspect of this work is the investigation of polarization effects over electrostatic potentials and atomic multipoles along a medium to long range of interaction distances. Large electronic charge fluxes and polarization changes are induced by a proton mainly when this positive particle approaches the least electronegative atom of diatomic heteronuclear molecules. The search for simple equations to describe polarization on electrostatic potentials from QTAIM quantities resulted in linear relations with r-4 (r is the interaction distance) for many cases. Moreover, the contribution from atomic dipoles to these potentials is usually the most affected contribution by polarization what reinforces the need for these dipoles to a minimal description of purely electrostatic interactions. Finally, CHELPG charges provide a description of polarization effects on electrostatic potentials that is in disagreement with physical arguments for certain of these molecules. (c) 2012 Wiley Periodicals, Inc.
Resumo:
We estimate the masses of the 1(--) heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in alpha(s) but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50-110) MeV and the ones of about (250-300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavor independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y-c(4260, 4360, 4660) and Y-b(10890) 1(--) experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure 1(--) four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0(++) four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1(--) states, while the splittings between the 0(++) lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1(--) and 0(++) four-quark states which are tiny and which exhibit a 1/M-Q behavior. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHCb and some other hadron factories. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Determination of chlorine using the molecular absorption of aluminum mono-chloride (AlCl) at the 261.418 nm wavelength was accomplished by high-resolution continuum source molecular absorption spectrometry using a transversely heated graphite tube furnace with an integrated platform. For the analysis. 10 mu L of the sample followed by 10 mu L of a solution containing Al-Ag-Sr modifier, (1 g L-1 each), were directly injected onto the platform. A spectral interference due to the use of Al-Ag-Sr as mixed modifier was easily corrected by the least-squares algorithm present in the spectrometer software. The pyrolysis and vaporization temperatures were 500 degrees C and 2200 degrees C, respectively. To evaluate the feasibility of a simple procedure for the determination of chlorine in food samples present in our daily lives, two different digestion methods were applied, namely (A) an acid digestion method using HNO3 only at room temperature, and (B) a digestion method with Ag, HNO3 and H2O2, where chlorine is precipitated as a low-solubility salt (AgCl), which is then dissolved with ammonia solution. The experimental results obtained with method B were in good agreement with the certified values and demonstrated that the proposed method is more accurate than method A. This is because the formation of silver chloride prevented analyte losses by volatilization. The limit of detection (LOD, 3 sigma/s) for Cl in methods A and B was 18 mu g g(-1) and 9 mu g g(-1), respectively, 1.7 and 3.3 times lower compared to published work using inductively coupled plasma optical emission spectrometry, and absolute LODs were 2.4 and 1.2 ng, respectively. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The electronic interactions between the [Cu(opba)]2- anions (where opba is orthophenylenebis (oxamato)) and single-wall carbon nanotubes (SWCNTs) were investigated by resonance Raman spectroscopy. The opba can form molecular magnets, and the interactions of opba with SWCNTs can produce materials with very different magnetic/electronic properties. It is observed that the electronic interaction shows a dependence on the SWCNT diameter independent of whether they are metallic or semiconducting, although the interaction is stronger for metallic tubes. The interaction also is dependent on the amount of complex that is probably adsorbed on the carbon surface of the SWCNTs. Some charge transfer can be also occurring between the metallic complex and the SWCNTs. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.
Resumo:
The present study aimed to show the in vivo mechanisms of action of an indole-thiazolidine molecule peroxisome-proliferator activated receptor pan-agonist (PPAR pan) and cyclooxygenase (COX) inhibitor, LYSO-7, in an ethanol/HCl-induced (Et/HCl) gastric lesion model. Swiss male mice were treated with vehicle, LYSO-7 or Bezafibrate (p.o.) 1 hour before oral administration of Et/HCl (60%/0.03M). In another set of assays, animals were injected i.p. with an anti-granulocyte antibody, GW9962 or L-NG-nitroarginine methyl ester (L-NAME) before treatment. One hour after Et/HCl administration, neutrophils were quantified in the blood and bone marrow and the gastric microcirculatory network was studied in situ. The gastric tissue was used to quantify the percentage of damaged area, as well as myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) protein and PPARγ protein and gene expression. Acid secretion was evaluated by the pylorus ligation model. LYSO-7 or Bezafibrate treatment reduced the necrotic area. LYSO-7 treatment enhanced PPARγ gene and protein expression in the stomach, and impaired local neutrophil influx and stasis of the microcirculatory network caused by Et/HCl administration. The effect seemed to be due to PPARγ agonist activity, as the LYSO-7 effect was abolished in GW9962 pre-treated mice. The reversal of microcirculatory stasis, but not neutrophil influx, was mediated by nitric oxide (NO), as L-NAME pre-treatment abolished the LYSO-7-mediated reestablishment of microcirculatory blood flow. This effect may depend on enhanced eNOS protein expression in injured gastric tissue. The pH and concentration of H(+) in the stomach were not modified by LYSO-7 treatment. In addition, LYSO-7 may induce less toxicity, as 28 days of oral treatment did not induce weight loss, as detected in pioglitazone treated mice. Thus, we show that LYSO-7 may be an effective treatment for gastric lesions by controlling neutrophil influx and microcirculatory blood flow mediated by NO
Resumo:
This Ph.D. candidate thesis collects the research work I conducted under the supervision of Prof.Bruno Samor´ı in 2005,2006 and 2007. Some parts of this work included in the Part III have been begun by myself during my undergraduate thesis in the same laboratory and then completed during the initial part of my Ph.D. thesis: the whole results have been included for the sake of understanding and completeness. During my graduate studies I worked on two very different protein systems. The theorical trait d’union between these studies, at the biological level, is the acknowledgement that protein biophysical and structural studies must, in many cases, take into account the dynamical states of protein conformational equilibria and of local physico-chemical conditions where the system studied actually performs its function. This is introducted in the introductory part in Chapter 2. Two different examples of this are presented: the structural significance deriving from the action of mechanical forces in vivo (Chapter 3) and the complexity of conformational equilibria in intrinsically unstructured proteins and amyloid formation (Chapter 4). My experimental work investigated both these examples by using in both cases the single molecule force spectroscopy technique (described in Chapter 5 and Chapter 6). The work conducted on angiostatin focused on the characterization of the relationships between the mechanochemical properties and the mechanism of action of the angiostatin protein, and most importantly their intertwining with the further layer of complexity due to disulfide redox equilibria (Part III). These studies were accompanied concurrently by the elaboration of a theorical model for a novel signalling pathway that may be relevant in the extracellular space, detailed in Chapter 7.2. The work conducted on -synuclein (Part IV) instead brought a whole new twist to the single molecule force spectroscopy methodology, applying it as a structural technique to elucidate the conformational equilibria present in intrinsically unstructured proteins. These equilibria are of utmost interest from a biophysical point of view, but most importantly because of their direct relationship with amyloid aggregation and, consequently, the aetiology of relevant pathologies like Parkinson’s disease. The work characterized, for the first time, conformational equilibria in an intrinsically unstructured protein at the single molecule level and, again for the first time, identified a monomeric folded conformation that is correlated with conditions leading to -synuclein and, ultimately, Parkinson’s disease. Also, during the research work, I found myself in the need of a generalpurpose data analysis application for single molecule force spectroscopy data analysis that could solve some common logistic and data analysis problems that are common in this technique. I developed an application that addresses some of these problems, herein presented (Part V), and that aims to be publicly released soon.
Resumo:
Oxidative stress has been implicated in the pathogenesis of a number of diseases including neurodegenerative disorders, cancer, ischemia, etc. Alzheimer’s disease (AD) is histopathologically characterized by the presence of extracellular senile plaque (SP), predominantly consisting of fibrillar amyloid-peptide (Aβ), intracellular neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau protein, and cell loss in the selected regions of the brain. However, the pathogenesis of AD remains largely unknown, but a number of hypothesis were proposed for AD mechanisms, which include: the amyloid cascade, excitotoxicity, oxidative stress and inflammation hypothesis, and all of them are based, to some extent on the role of A. Accumulated evidence indicates that the increased levels of ROS may act as important mediators of synaptic loss and eventually promote formation of neurofibrillary tangles and senile plaques. Therefore a vicious circle between ROS and Aaccumulation may accelerate progression of AD. For these reasons, growing attention has focused on oxidative mechanism of Atoxicity as well as the search for novel neuroprotective agents. A strategy to prevent the oxidative stress in neurons may be the use of chemopreventive agents as inducers of antioxidant and phase 2 enzymes. Sulforaphane (SF), derived from corresponding glucoraphanin, glucosinolate found in abundance in cruciferous vegetables, has recently gained attention as a potential neuroprotective compound inducer of antioxidant phase 2 enzymes. Consistent with this evidence, the study is aimed at identifying the SF ability to prevent and counteract the oxidative damage inducted by oligomers of Aβ (1-42) in terms of impairment in the intracellular redox state and cellular death in differentiated human neuroblastoma and microglia primary cultures. In addition we will evaluated the mechanism underlying the SF neuroprotection activity.
13C NMR of a single molecule magnet: analysis of pseudocontact shifts and residual dipolar couplings
Resumo:
Paramagnetic triple decker complexes of lanthanides are promising Single Molecule Magnets (SMMs), with many potential uses. Some of them show preferable relaxation behavior, which enables the recording of well resolved NMR spectra. These axially symmetric complexes are also strongly magnetically anisotropic, and this property can be described with the axial component of the magnetic susceptibility tensor, χa. For triple decker complexes with phthalocyanine based ligands, the Fermi˗contact contribution is small. Hence, together with the axial symmetry, the experimental chemical shifts in 1H and 13C NMR spectra can be modeled easily by considering pseudocontact and orbital shifts alone. This results in the determination of the χa value, which is also responsible for molecular alignment and consequently for the observation of residual dipolar couplings (RDCs). A detailed analysis of the experimental 1H-13C and 1H-1H couplings revealed that contributions from RDCs (positive and negative) and from dynamic frequency shifts (negative for all observed couplings) have to be considered. Whilst the pseudocontact shifts depend on the average positions of 1H and 13C nuclei relative to the lanthanide ions, the RDCs are related to the mobility of nuclei they correspond to. This phenomenon allows for the measurement of the internal mobility of the various groups in the SMMs.
Resumo:
By pulling and releasing the tension on protein homomers with the Atomic Force Miscroscope (AFM) at different pulling speeds, dwell times and dwell distances, the observed force-response of the protein can be fitted with suitable theoretical models. In this respect we developed mathematical procedures and open-source computer codes for driving such experiments and fitting Bell’s model to experimental protein unfolding forces and protein folding frequencies. We applied the above techniques to the study of proteins GB1 (the B1 IgG-binding domain of protein G from Streptococcus) and I27 (a module of human cardiac titin) in aqueous solutions of protecting osmolytes such as dimethyl sulfoxide (DMSO), glycerol and trimethylamine N-oxide (TMAO). In order to get a molecular understanding of the experimental results we developed an Ising-like model for proteins that incorporates the osmophobic nature of their backbone. The model benefits from analytical thermodynamics and kinetics amenable to Monte-Carlo simulation. The prevailing view used to be that small protecting osmolytes bridge the separating beta-strands of proteins with mechanical resistance, presumably shifting the transition state to significantly higher distances that correlate with the molecular size of the osmolyte molecules. Our experiments showed instead that protecting osmolytes slow down protein unfolding and speed-up protein folding at physiological pH without shifting the protein transition state on the mechanical reaction coordinate. Together with the theoretical results of the Ising-model, our results lend support to the osmophobic theory according to which osmolyte stabilisation is a result of the preferential exclusion of the osmolyte molecules from the protein backbone. The results obtained during this thesis work have markedly improved our understanding of the strategy selected by Nature to strengthen protein stability in hostile environments, shifting the focus from hypothetical protein-osmolyte interactions to the more general mechanism based on the osmophobicity of the protein backbone.
Resumo:
The human p53 tumor suppressor, known as the “guardian of the genome”, is one of the most important molecules in human cancers. One mechanism for suppressing p53 uses its negative regulator, MDM2, which modulates p53 by binding directly to and decreasing p53 stability. In testing novel therapeutic approaches activating p53, we investigated the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-Acute lymphoblastic leukemia (ALL) patient samples. In this study we demonstrated that treatment with Nutlin-3a induced grow arrest and apoptosis mediated by p53 pathway in ALL cells with wild-type p53, in time and dose-dependent manner. Consequently, MDM2 inhibitor caused an increase of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from Ph+ ALL patients with the T315I Bcr-Abl kinase domain mutation. In order to better elucidate the implications of p53 activation and to identify biomarkers of clinical activity, gene expression profiling analysis in sensitive cell lines was performed. A total of 621 genes were differentially expressed (p < 0.05). We found a strong down-regulation of GAS41 (growth-arrest specific 1 gene) and BMI1 (a polycomb ring-finger oncogene) (fold-change -1.35 and -1.11, respectively; p-value 0.02 and 0.03, respectively) after in vitro treatment as compared to control cells. Both genes are repressors of INK4/ARF and p21. Given the importance of BMI in the control of apoptosis, we investigated its pattern in treated and untreated cells, confirming a marked decrease after exposure to MDM2 inhibitor in ALL cells. Noteworthy, the BMI-1 levels remained constant in resistant cells. Therefore, BMI-1 may be used as a biomarker of response. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph-ALL.
Resumo:
Self-assembled molecular structures were investigated on insulating substrate surfaces using non-contact atomic force microscopy. Both, substrate preparation and molecule deposition, took place under ultra-high vacuum conditions. First, C60 molecules were investigated on the TiO2 (110) surface. This surface exhibits parallel running troughs at the nanometer scale, which strongly steer the assembly of the molecules. This is in contrast to the second investigated surface. The CaF2 (111) surface is atomically flat and the molecular assemblyrnwas observed to be far less affected by the surface. Basically different island structures were observed to what is typically know. Based on extensive experimental studies and theoretical considerations, a comprehensive picture of the processes responsible for the island formation of C60 molecules on this insulating surfaces was developed. The key process for the emergence of the observed novel island structures was made out to be the dewetting of molecules from the substrate. This new knowledge allows to further understand andrnexploit self-assembly techniques in structure fabrication on insulating substrate surfaces. To alter island formation and island structure, C60 molecules were codeposited with second molecule species (PTCDI and SubPc) on the CaF2 (111) surface. Depending on the order of deposition, quiet different structures were observed to arise. Thus, these are the first steps towards more complex functional arrangements consisting of two molecule species on insulating surfaces.
Resumo:
Allergy is a common hypersensitivity disorder that affects 15% to 20% of the population and its prevalence is increasing worldwide. Its severity correlates with the degree of eosinophil infiltration into the conjunctiva, which is mediated by chemokines that stimulate the production of adhesion molecules like intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on the endothelial cell surface. The α4β1 and α4β7 integrins are expressed in eosinophils and contribute to their activation and infiltration in AC through the binding to VCAM-1 or fibronectin, expressed on vascular endothelial cells. Blockade of α4 integrins might be a therapeutical achievement in allergic eye diseases. DS 70, that show an IC50 in the nanomolar range against α4β1 integrin in Jurkat cells and in the eosinophilic cell line EOL-1. This compound was able to prevent cell adhesion to VCAM-1 and FN in vitro. In a scintillation proximity assay DS70 displaced 125I-FN binding to human α4β1 integrin and, in flow cytometry analysis, it antagonized the binding of a primary antibody to α4β1 integrin expressed on the Jurkat cells surface as well. Furthermore, we analysed also its effects on integrin α4β1 signalling. In an vivo model of allergic conjunctivitis, topical DS70 reduced the clinical aspects of EPR (early phase reaction) and LPR (late phase reaction), by reducing clinical score, eosinophil accumulation, mRNA levels of cytochines and chemochines pro-inflammatory and the conjunctival expression of α4 integrin. In conclusion, DS70 seems a novel antiallergic ocular agent that has significant effects on both early and late phases of ocular allergy.
Resumo:
Point mutations emerge as one of the rate-limiting steps in tumor response to small molecule inhibitors of protein kinases. Here we characterized the response of the MET mutated variants, V1110I, V1238I, V1206L and H1112L to the small molecule SU11274. Our results reveal a distinct inhibition pattern of the four mutations with IC(50) values for autophosphorylation inhibition ranging between 0.15 and 1.5muM. Differences were further seen on the ability of SU11274 to inhibit phosphorylation of downstream MET transducers such as AKT, ERK, PLCgamma and STAT3 and a variety of MET-dependent biological endpoints. In all the assays, H1112L was the most sensitive to SU11274, while V1206L was less affected under the used concentration range. The differences in responses to SU11274 are discussed based on a structural model of the MET kinase domain.