931 resultados para Module drivers
Resumo:
The present work is a collection of three essays devoted at understanding the determinants and implications of the adoption of environmental innovations EI by firms, by adopting different but strictly related schumpeterian perspectives. Each of the essays is an empirical analysis that investigates one original research question, formulated to properly fill the gaps that emerged in previous literature, as the broad introduction of this thesis outlines. The first Chapter is devoted at understanding the determinants of EI by focusing on the role that knowledge sources external to the boundaries of the firm, such as those coming from business suppliers or customers or even research organizations, play in spurring their adoption. The second Chapter answers the question on what induces climate change technologies, adopting regional and sectoral lens, and explores the relation among green knowledge generation, inducement in climate change and environmental performances. Chapter 3 analyzes the economic implications of the adoption of EI for firms, and proposes to disentangle EI by different typologies of innovations, such as externality reducing innovations and energy and resource efficient innovations. Each Chapter exploits different dataset and heterogeneous econometric models, that allow a better extension of the results and to overcome the limits that the choice of one dataset with respect to its alternatives engenders. The first and third Chapter are based on an empirical investigation on microdata, i.e. firm level data extracted from innovation surveys. The second Chapter is based on the analysis of patent data in green technologies that have been extracted by the PATSTAT and REGPAT database. A general conclusive Chapter will follow the three essays and will outline how each Chapter filled the research gaps that emerged, how its results can be interpreted, which policy implications can be derived and which are the possible future lines of research in the field.
Resumo:
The aim of this dissertation is to provide a translation from English into Italian of an extract from the research report “The Nature of Errors Made by Drivers”. The research was conducted by the MUARC (the Monash University Accident Research Centre) and published in June 2011 by Austroads, the association of Australasian road transport and traffic agencies. The excerpt chosen for translation is the third chapter, which provides an overview of the on-road pilot study conducted to analyse why drivers make mistakes during their everyday drive, including the methodology employed and the results obtained. This work is divided into six sections. It opens with an introduction on the topic and the formal structure of the report, followed by the first chapter, which provides an overview of the main features of the languages for special purposes and the specialised texts, an analysis of the text type and a presentation of the extract chosen for translation. In the second chapter the linguistic and extralinguistic resources available to specialised translators are presented, focussing on the ones used to translate the text. The third chapter is dedicated to the source text and its translation, while the fourth one provides an analysis of the strategies chosen to translate the text and a comment on the solutions to problematic passages. Finally, the last section – the conclusion – provides a comment on the entire work and on the professional activity of translators. The work closes with an appendix, which contains a glossary of the terms extracted from the translated text.
Resumo:
In Switzerland, every physician has the right to report a patient that is potentially unfit to drive to the licensing authority without violating medical confidentiality. Verified information regarding physicians' attitudes concerning this discretionary reporting and the frequency of such reports are not available. In order to answer these questions, 635 resident physicians were sent a questionnaire. The response rate was 52%. On average, the responding physicians--for all specialties--reported 0.31 patients (SD 0.64, 95% CI 0.24-0.38) in the year before the survey and 1.00 patient (SD 1.74, 95% CI 0.81-1.20) in the past 5 years. Seventy-nine percent of the responding physicians indicated knowing the current legal requirements for driving in Switzerland. In applied logistic regression analysis, only two factors correlate significantly with reporting: male sex (odds ratio 5.4) and the specialty "general medicine" (odds ratio 3.4). Ninety-seven percent of the physicians were against abolishing medical discretionary reporting and 29% were in favor of introducing mandatory reporting. The great majority of the questioned physicians supported the discretionary reporting of drivers that are potentially unfit to drive as currently practiced in Switzerland. The importance and the necessity of a regular traffic medicine-related continuing education for medical professionals are shown by the low number of reports per physician.
Resumo:
Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare.
Resumo:
This is the first part of a study investigating a model-based transient calibration process for diesel engines. The motivation is to populate hundreds of parameters (which can be calibrated) in a methodical and optimum manner by using model-based optimization in conjunction with the manual process so that, relative to the manual process used by itself, a significant improvement in transient emissions and fuel consumption and a sizable reduction in calibration time and test cell requirements is achieved. Empirical transient modelling and optimization has been addressed in the second part of this work, while the required data for model training and generalization are the focus of the current work. Transient and steady-state data from a turbocharged multicylinder diesel engine have been examined from a model training perspective. A single-cylinder engine with external air-handling has been used to expand the steady-state data to encompass transient parameter space. Based on comparative model performance and differences in the non-parametric space, primarily driven by a high engine difference between exhaust and intake manifold pressures (ΔP) during transients, it has been recommended that transient emission models should be trained with transient training data. It has been shown that electronic control module (ECM) estimates of transient charge flow and the exhaust gas recirculation (EGR) fraction cannot be accurate at the high engine ΔP frequently encountered during transient operation, and that such estimates do not account for cylinder-to-cylinder variation. The effects of high engine ΔP must therefore be incorporated empirically by using transient data generated from a spectrum of transient calibrations. Specific recommendations on how to choose such calibrations, how many data to acquire, and how to specify transient segments for data acquisition have been made. Methods to process transient data to account for transport delays and sensor lags have been developed. The processed data have then been visualized using statistical means to understand transient emission formation. Two modes of transient opacity formation have been observed and described. The first mode is driven by high engine ΔP and low fresh air flowrates, while the second mode is driven by high engine ΔP and high EGR flowrates. The EGR fraction is inaccurately estimated at both modes, while EGR distribution has been shown to be present but unaccounted for by the ECM. The two modes and associated phenomena are essential to understanding why transient emission models are calibration dependent and furthermore how to choose training data that will result in good model generalization.
Resumo:
This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.
Resumo:
This project addresses the unreliability of operating system code, in particular in device drivers. Device driver software is the interface between the operating system and the device's hardware. Device drivers are written in low level code, making them difficult to understand. Almost all device drivers are written in the programming language C which allows for direct manipulation of memory. Due to the complexity of manual movement of data, most mistakes in operating systems occur in device driver code. The programming language Clay can be used to check device driver code at compile-time. Clay does most of its error checking statically to minimize the overhead of run-time checks in order to stay competitive with C's performance time. The Clay compiler can detect a lot more types of errors than the C compiler like buffer overflows, kernel stack overflows, NULL pointer uses, freed memory uses, and aliasing errors. Clay code that successfully compiles is guaranteed to run without failing on errors that Clay can detect. Even though C is unsafe, currently most device drivers are written in it. Not only are device drivers the part of the operating system most likely to fail, they also are the largest part of the operating system. As rewriting every existing device driver in Clay by hand would be impractical, this thesis is part of a project to automate translation of existing drivers from C to Clay. Although C and Clay both allow low level manipulation of data and fill the same niche for developing low level code, they have different syntax, type systems, and paradigms. This paper explores how C can be translated into Clay. It identifies what part of C device drivers cannot be translated into Clay and what information drivers in Clay will require that C cannot provide. It also explains how these translations will occur by explaining how each C structure is represented in the compiler and how these structures are changed to represent a Clay structure.