916 resultados para Modification of the aromatic ring
Resumo:
Aerial oxidation of the novel homocyclic tetratin species [{SnAr2}3SnArBr] (1) [1] (Ar C6H3Et2-2,6) affords the tritin heterocycle [O{Sn(C6H3Et2-2,6)2}3] (2), which has been crystallographically characterised; 2 is the first reported oxatristannacyclobutane, and the first heterocyclic tin species having both tintin and tinheteroatom bonds.
Resumo:
Extending previous studies, a full-circle investigation of the ring current has been made using Cluster 4-spacecraft observations near perigee, at times when the Cluster array had relatively small separations and nearly regular tetrahedral configurations, and when the Dst index was greater than −30 nT (non-storm conditions). These observations result in direct estimations of the near equatorial current density at all magnetic local times (MLT) for the first time and with sufficient accuracy, for the following observations. The results confirm that the ring current flows westward and show that the in situ average measured current density (sampled in the radial range accessed by Cluster 4–4.5RE) is asymmetric in MLT, ranging from 9 to 27 nAm−2. The direction of current is shown to be very well ordered for the whole range of MLT. Both of these results are in line with previous studies on partial ring extent. The magnitude of the current density, however, reveals a distinct asymmetry: growing from 10 to 27 nAm−2 as azimuth reduces from about 12:00MLT to 03:00 and falling from 20 to 10 nAm−2 less steadily as azimuth reduces from 24:00 to 12:00MLT. This result has not been reported before and we suggest it could reflect a number of effects. Firstly, we argue it is consistent with the operation of region-2 field aligned-currents (FACs), which are expected to flow upward into the ring current around 09:00MLT and downward out of the ring current around 14:00MLT. Secondly, we note that it is also consistent with a possible asymmetry in the radial distribution profile of current density (resulting in higher peak at 4– 4.5RE). We note that part of the enhanced current could reflect an increase in the mean AE activity (during the periods in which Cluster samples those MLT).
Resumo:
The development of global magnetospheric models, such as Space Weather Modeling Framework (SWMF), which can accurately reproduce and track space weather processes has high practical utility. We present an interval on 5 June 1998, where the location of the polar cap boundary, or open-closed field line boundary (OCB), can be determined in the ionosphere using a combination of instruments during a period encompassing a sharp northward to southward interplanetary field turning. We present both point- and time-varying comparisons of the observed and simulated boundaries in the ionosphere and find that when using solely the coupled ideal magnetohydrodynamic magnetosphere-ionosphere model, the rate of change of the OCB to a southward turning of the interplanetary field is significantly faster than that computed from the observational data. However, when the inner magnetospheric module is incorporated, the modeling framework both qualitatively, and often quantitatively, reproduces many elements of the studied interval prior to an observed substorm onset. This result demonstrates that the physics of the inner magnetosphere is critical in shaping the boundary between open and closed field lines during periods of southward interplanetary magnetic field (IMF) and provides significant insight into the 3-D time-dependent behavior of the Earth's magnetosphere in response to a northward-southward IMF turning. We assert that during periods that do not include the tens of minutes surrounding substorm expansion phase onset, the coupled SWMF model may provide a valuable and reliable tool for estimating both the OCB and magnetic field topology over a wide range of latitudes and local times.
Resumo:
Enantioselective heterogeneous hydrogenation of Cdouble bond; length as m-dashO bonds is of great potential importance in the synthesis of chirally pure products for the pharmaceutical and fine chemical industries. One of the most widely studied examples of such a reaction is the hydrogenation of β-ketoesters and β-diketoesters over Ni-based catalysts in the presence of a chiral modifier. Here we use scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) to investigate the adsorption of the chiral modifier, namely (R,R)-tartaric acid, onto individual nickel nanoparticles. The C K-edge spectra strongly suggest that tartaric acid deposited onto the nanoparticle surfaces from aqueous solutions undergoes a keto-enol tautomerisation. Furthermore, we are able to interrogate the Ni L2,3-edge resonances of individual metal nanoparticles which, combined with X-ray diffraction (XRD) patterns showed them to consist of a pure nickel phase rather than the more thermodynamically stable bulk nickel oxide. Importantly, there appears to be no “particle size effect” on the adsorption mode of the tartaric acid in the particle size range ~ 90–~ 300 nm.
Resumo:
The nature and extent of pre-Columbian (pre-1492 AD) human impact in Amazonia is a contentious issue. The Bolivian Amazon has yielded some of the most impressive evidence for large and complex pre-Columbian societies in the Amazon basin, yet there remains relatively little data concerning the land use of these societies over time. Palaeoecology, when integrated with archaeological data, has the potential to fill these gaps in our knowledge. We present a 6,000-year record of anthropogenic burning, agriculture and vegetation change, from an oxbow lake located adjacent to a pre-Columbian ring-ditch in north-east Bolivia (13°15’44” S, 63°42’37” W). Human occupation around the lake site is inferred from pollen and phytoliths of maize (Zea mays L.) and macroscopic charcoal evidence of anthropogenic burning. First occupation around the lake was radiocarbon dated to ~2500 years BP. The persistence of maize in the record from ~1850 BP suggests that it was an important crop grown in the ringditch region in pre-Columbian times, and abundant macroscopic charcoal suggests that pre-Columbian land management entailed more extensive burning of the landscape than the slash-and-burn agriculture practised around the site today. The site was occupied continuously until near-modern times, although there is evidence for a decline in agricultural intensity or change in land use strategy, and possible population decline, from ~600-500 BP. The long and continuous occupation, which predates the establishment of rainforest in the region, suggests that pre-Columbian land use may have had a significant influence on ecosystem development at this site over the last ~2000 years.
Resumo:
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 mu g km(-1) to 612 mu g km(-1) in the gasohol vehicle, and from 11.7 mu g km(-1) to 27.4 mu g km(-1) in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 mu g TEQ km(-1) to 4.61 mu g TEQ km(-1) for the gasohol vehicle and from 0.0117 mu g TEQ km(-1) to 0.0218 mu g TEQ km(-1) in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the biodegradation mechanism of phenol and sub products (such as catechol and hydroquinone) in Chromobacterium violaceum was investigated by cloning and molecular characterization of a phenol monooxygenase gene in Escherichia coli. This gene (Cvmp) is very similar (74 and 59% of similarity and identity, respectively) to the ortholog from Ralstonia eutropha, bacteria capable of utilizing phenol as the sole carbon source. The phenol biodegradation ability of E. coli recombinant strains was tested by cell-growth in a minimal medium containing phenol as the sole source of carbon and release of intermediary metabolites (catechol and hydroquinone). Interestingly, during the growth of these strains on phenol, catechol, and hydroquinone accumulated transiently in the medium. These metabolites were further analyzed by HPLC. These results indicated that phenol can be initially orto or para hydroxylated to produce cathecol or hydroquinone, respectively, followed by meta-cleavage of aromatic rings. To verify this information, the metabolites obtained from HPLC were submitted to LC/MS to confirm their chemical structure, thereby indicating that the recombinant strains utilize two different routes simultaneously, leading to different ring-fission substrates for the metabolism of phenol. (C) KSBB
Resumo:
Here we present the catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) to less toxic mixtures of saturated and partial unsaturated polycyclic hydrocarbons under mild reaction conditions using a magnetically recoverable rhodium catalyst and molecular hydrogen as the exclusive H source. The catalyst is easily recovered after each reaction by placing a permanent magnet on the reactor wall and it can be reused in successive runs without any significant loss of catalytic activity. As an example, anthracene was totally converted into the saturated polycyclic hydrocarbon form (ca. 60%) and the partially hydrogenated form, 1,2,3,4,5,6,7,8-octahydroanthracene (ca. 40%). The catalyst operates in a broad range of temperature and H(2) pressure in both organic and aqueous/organic solutions of anthracene and it also exhibits significant activity at low substrate concentrations (20 ppm). This can be an efficient recycling process for hydrogenation of PAHs present in contaminated fluid waste streams. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The surface modification and crystallization process of BaO-B2O3-SiO2 glass compositions when exposed to CO2 laser irradiation was evaluated as a function of the laser power, irradiation time and surface condition. The glass surface was modified by the application of laser power exceeding 0.40 W and an irradiation time of more than 300 s. Micro-Raman and X-ray diffraction measurements revealed at high laser power the formation of beta-BaB2O4 (beta-BBO) crystalline phase. The crystallization of the irradiated region was enhanced when beta-BBO micrometer sized particles were dispersed on the surface of the glass sample. The intensity of the second harmonic generation observed in the crystallized region was found to depend mainly on the condition of the glassy surface prior to glass irradiation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study presents the syntheses and characterization of 2-mercaptopyridine (pyS(-)) complexes containing ruthenium(II) with the following general formula [Ru(pyS)(2)(P-P)], P-P = (c-dppen) = cis-1,2-bis(diphenylphosphino)ethylene) (1); (dppe)=1,2-bis(diphenylphosphino)ethane (2); (dppp)=1,3-bis(diphenylphosphino)propane (3) and (dppb) = 1,4-bis(diphenylphosphino)butane (4). The complexes were synthesized from the mer- or fac-[RuCl(3)(NO)(P-P)] precursors in the presence of triethylamine in methanol solution with dependence of the product on the P-P ligand. The reaction of pyS- with a ruthenium complex containing a bulky aromatic diphosphine dppb disclosed a major product with a dangling coordinated dppbO-P, the [Ru(pyS)(2)(NO)(eta(1)-dppbO-P)]PF(6) (5). In addition, this work also presents and discusses the spectroscopic and electrochemical behavior of 1-5. and report the X-ray structures for I and S. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Suzuki sporadic simple group Suz. As a consequence, for this group we confirm the Kimmerle`s conjecture on prime graphs.
Resumo:
The activation parameters for the thermal decomposition of 13 acridinium-substituted 1,2-dioxetanes, bearing an aromatic moiety, were determined and their chemiluminescence emission quantum yields estimated, utilizing in situ photosensitized 1,2-dioxetane generation and observation of its thermal decomposition kinetics, without isolation of these highly unstable cyclic peroxides. Decomposition rate constants show linear free-energy correlation for electron-withdrawing substituents, with a Hammett reaction constant of rho = 1.3 +/- 0.1, indicating the occurrence of an intramolecular electron transfer from the acridinium moiety to the 1,2-dioxetane ring, as postulated by the intramolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Emission quantum yield behavior can also be rationalized on the basis of the intramolecular CIEEL mechanism, additionally evidencing its occurrence in this transformation. Both relations constitute the first experimental evidence for the occurrence of the postulated intramolecular electron transfer in the catalyzed and induced decomposition of properly substituted 1,2-dioxetanes.
Resumo:
The burning of organic residues and wastes in furnaces of cement industries has been an attractive and lucrative approach to eliminate stocks of these pollutants. There is a potential risk for producing PAH in the workplace of industries burning organic wastes, so that highly sensitive analytical methods are needed for monitoring the air quality of these environments. An official method for determination of PAH is based on liquid chromatography with fluorescence detection at fixed excitation and emission wavelengths. We demonstrate that a suitable choice of these wavelengths, which are changed during the chromatographic run, significantly improves the detectability of PAH in atmosphere and particulate matter collected in cement industries.
Resumo:
Surface treatment of polymers by discharge plasmas has increasingly found industrial applications due to its capability of modifying uniformly the surface without changing the material bulk properties. This work deals with surface modification of polyethylene terephthalate (PET) by a dielectric barrier discharge (DBD) at atmospheric pressure. The treatments were conducted in air, nitrogen or argon plasma. The polymer surface was characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results show that the plasma treatment introduces oxygen-and nitrogen-related polar groups on the polymer surface and promotes the surface roughening. Both plasma-induced surface modifications contribute to the enhancement of the polymer wettability.