991 resultados para Modeling complexity
Resumo:
Most of the traditional software and database development approaches tend to be serial, not evolutionary and certainly not agile, especially on data-oriented aspects. Most of the more commonly used methodologies are strict, meaning they’re composed by several stages each with very specific associated tasks. A clear example is the Rational Unified Process (RUP), divided into Business Modeling, Requirements, Analysis & Design, Implementation, Testing and Deployment. But what happens when the needs of a well design and structured plan, meet the reality of a small starting company that aims to build an entire user experience solution. Here resource control and time productivity is vital, requirements are in constant change, and so is the product itself. In order to succeed in this environment a highly collaborative and evolutionary development approach is mandatory. The implications of constant changing requirements imply an iterative development process. Project focus is on Data Warehouse development and business modeling. This area is usually a tricky one. Business knowledge is part of the enterprise, how they work, their goals, what is relevant for analyses are internal business processes. Throughout this document it will be explained why Agile Modeling development was chosen. How an iterative and evolutionary methodology, allowed for reasonable planning and documentation while permitting development flexibility, from idea to product. More importantly how it was applied on the development of a Retail Focused Data Warehouse. A productized Data Warehouse built on the knowledge of not one but several client needs. One that aims not just to store usual business areas but create an innovative sets of business metrics by joining them with store environment analysis, converting Business Intelligence into Actionable Business Intelligence.
Resumo:
This paper models an n-stage stacked Blumlein generator for bipolar pulses for various load conditions. Calculation of the voltage amplitudes in time domain at the load and between stages is described for an n-stage generator. For this, the reflection and transmission coefficients are mathematically modeled where impedance discontinuity occurs (i.e., at the junctions between two transmission lines). The mathematical model developed is assessed by comparing simulation results to experimental data from a two-stage Blumlein solid-state prototype.
Resumo:
A área da simulação computacional teve um rápido crescimento desde o seu apareciment, sendo actualmente uma das ciências de gestão e de investigação operacional mais utilizadas. O seu princípio baseia-se na replicação da operação de processos ou sistemas ao longo de períodos de tempo, tornando-se assim uma metodologia indispensável para a resolução de variados problemas do mundo real, independentemente da sua complexidade. Das inúmeras áreas de aplicação, nos mais diversos campos, a que mais se destaca é a utilização em sistemas de produção, onde o leque de aplicações disponível é muito vasto. A sua aplicação tem vindo a ser utilizada para solucionar problemas em sistemas de produção, uma vez que permite às empresas ajustar e planear de uma maneira rápida, eficaz e ponderada as suas operações e os seus sistemas, permitindo assim uma rápida adaptação das mesmas às constantes mudanças das necessidades da economia global. As aplicações e packages de simulação têm seguindo as tendências tecnológicas pelo que é notório o recurso a tecnologias orientadas a objectos para o desenvolvimento das mesmas. Este estudo baseou-se, numa primeira fase, na recolha de informação de suporte aos conceitos de modelação e simulação, bem como a respectiva aplicação a sistemas de produção em tempo real. Posteriormente centralizou-se no desenvolvimento de um protótipo de uma aplicação de simulação de ambientes de fabrico em tempo real. O desenvolvimento desta ferramenta teve em vista eventuais fins pedagógicos e uma utilização a nível académico, sendo esta capaz de simular um modelo de um sistema de produção, estando também dotada de animação. Sem deixar de parte a possibilidade de integração de outros módulos ou, até mesmo, em outras plataformas, houve ainda a preocupação acrescida de que a sua implementação recorresse a metodologias de desenvolvimento orientadas a objectos.
Resumo:
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
Resumo:
Many data have been useful to describe the growth of marine mammals, invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-pertz and von Bertalanffy's growth models. A generalized family of von Bertalanffy's maps, which is proportional to the right hand side of von Bertalanffy's growth equation, is studied and its dynamical approach is proposed. The system complexity is measured using Lyapunov exponents, which depend on two biological parameters: von Bertalanffy's growth rate constant and the asymptotic weight. Applications of synchronization in real world is of current interest. The behavior of birds ocks, schools of fish and other animals is an important phenomenon characterized by synchronized motion of individuals. In this work, we consider networks having in each node a von Bertalanffy's model and we study the synchronization interval of these networks, as a function of those two biological parameters. Numerical simulation are also presented to support our approaches.
Resumo:
In this study the inhalation doses and respective risk are calculated for the population living within a 20 km radius of a coal-fired power plant. The dispersion and deposition of natural radionuclides were simulated by a Gaussian dispersion model estimating the ground level activity concentration. The annual effective dose and total risk were 0.03205 mSv/y and 1.25 x 10-8, respectively. The effective dose is lower than the limit established by the ICRP and the risk is lower than the limit proposed by the U.S. EPA, which means that the considered exposure does not pose any risk for the public health.
Resumo:
Pultrusion is an industrial process used to produce glass fibers reinforced polymers profiles. These materials are worldwide used when performing characteristics, such as great electrical and magnetic insulation, high strength to weight ratio, corrosion and weather resistance, long service life and minimal maintenance are required. In this study, we present the results of the modelling and simulation of heat flow through a pultrusion die by means of Finite Element Analysis (FEA). The numerical simulation was calibrated based on temperature profiles computed from thermographic measurements carried out during pultrusion manufacturing process. Obtained results have shown a maximum deviation of 7%, which is considered to be acceptable for this type of analysis, and is below to the 10% value, previously specified as maximum deviation. © 2011, Advanced Engineering Solutions.
Resumo:
Background: Complex medication regimens may adversely affect compliance and treatment outcomes. Complexity can be assessed with the medication regimen complexity index (MRCI), which has proved to be a valid, reliable tool, with potential uses in both practice and research. Objective: To use the MRCI to assess medication regimen complexity in institutionalized elderly people. Setting: Five nursing homes in mainland Portugal. Methods: A descriptive, cross-sectional study of institutionalized elderly people (n = 415) was performed from March to June 2009, including all inpatients aged 65 and over taking at least one medication per day. Main outcome measure: Medication regimen complexity index. Results: The mean age of the sample was 83.9 years (±6.6 years), and 60.2 % were women. The elderly patients were taking a large number of drugs, with 76.6 % taking more than five medications per day. The average medication regimen complexity was 18.2 (±SD = 9.6), and was higher in the females (p < 0.001). The most decisive factors contributing to the complexity were the number of drugs and dosage frequency. In regimens with the same number of medications, schedule was the most relevant factor in the final score (r = 0.922), followed by pharmaceutical forms (r = 0.768) and additional instructions (r = 0.742). Conclusion: Medication regimen complexity proved to be high. There is certainly potential for the pharmacist's intervention to reduce it as part as the medication review routine in all the patients.
Resumo:
This paper proposes the concept of multi-asynchronous-channel for Petri nets. Petri nets extended with multi-asynchronous-channels and time-domains support the specification of distributed controllers, where each controller has a synchronous execution but the global system is asynchronous (globally-asynchronous locally-synchronous systems). Each multi-asynchronous-channel specify the interaction between two or more distributed controllers. These channels, together with the time-domain concept, ensure the creation of network-independent models to support implementations using heterogeneous communication networks. The created models support not only the systems documentation but also their validation and implementation through simulation tools, verification tools, and automatic code generators. An application example illustrates the use of a Petri net class extended with the proposed channels. © 2015 IEEE.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Trabalho de Projeto para obtenção do grau de mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Civil-Perfil de Construção
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Work presented in the context of the European Master in Computational Logics, as partial requisit for the graduation as Master in Computational Logics
Resumo:
All over the world, the liberalization of electricity markets, which follows different paradigms, has created new challenges for those involved in this sector. In order to respond to these challenges, electric power systems suffered a significant restructuring in its mode of operation and planning. This restructuring resulted in a considerable increase of the electric sector competitiveness. Particularly, the Ancillary Services (AS) market has been target of constant renovations in its operation mode as it is a targeted market for the trading of services, which have as main objective to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. In this way, with the increasing penetration of distributed energy resources including distributed generation, demand response, storage units and electric vehicles, it is essential to develop new smarter and hierarchical methods of operation of electric power systems. As these resources are mostly connected to the distribution network, it is important to consider the introduction of this kind of resources in AS delivery in order to achieve greater reliability and cost efficiency of electrical power systems operation. The main contribution of this work is the design and development of mechanisms and methodologies of AS market and for energy and AS joint market, considering different management entities of transmission and distribution networks. Several models developed in this work consider the most common AS in the liberalized market environment: Regulation Down; Regulation Up; Spinning Reserve and Non-Spinning Reserve. The presented models consider different rules and ways of operation, such as the division of market by network areas, which allows the congestion management of interconnections between areas; or the ancillary service cascading process, which allows the replacement of AS of superior quality by lower quality of AS, ensuring a better economic performance of the market. A major contribution of this work is the development an innovative methodology of market clearing process to be used in the energy and AS joint market, able to ensure viable and feasible solutions in markets, where there are technical constraints in the transmission network involving its division into areas or regions. The proposed method is based on the determination of Bialek topological factors and considers the contribution of the dispatch for all services of increase of generation (energy, Regulation Up, Spinning and Non-Spinning reserves) in network congestion. The use of Bialek factors in each iteration of the proposed methodology allows limiting the bids in the market while ensuring that the solution is feasible in any context of system operation. Another important contribution of this work is the model of the contribution of distributed energy resources in the ancillary services. In this way, a Virtual Power Player (VPP) is considered in order to aggregate, manage and interact with distributed energy resources. The VPP manages all the agents aggregated, being able to supply AS to the system operator, with the main purpose of participation in electricity market. In order to ensure their participation in the AS, the VPP should have a set of contracts with the agents that include a set of diversified and adapted rules to each kind of distributed resource. All methodologies developed and implemented in this work have been integrated into the MASCEM simulator, which is a simulator based on a multi-agent system that allows to study complex operation of electricity markets. In this way, the developed methodologies allow the simulator to cover more operation contexts of the present and future of the electricity market. In this way, this dissertation offers a huge contribution to the AS market simulation, based on models and mechanisms currently used in several real markets, as well as the introduction of innovative methodologies of market clearing process on the energy and AS joint market. This dissertation presents five case studies; each one consists of multiple scenarios. The first case study illustrates the application of AS market simulation considering several bids of market players. The energy and ancillary services joint market simulation is exposed in the second case study. In the third case study it is developed a comparison between the simulation of the joint market methodology, in which the player bids to the ancillary services is considered by network areas and a reference methodology. The fourth case study presents the simulation of joint market methodology based on Bialek topological distribution factors applied to transmission network with 7 buses managed by a TSO. The last case study presents a joint market model simulation which considers the aggregation of small players to a VPP, as well as complex contracts related to these entities. The case study comprises a distribution network with 33 buses managed by VPP, which comprises several kinds of distributed resources, such as photovoltaic, CHP, fuel cells, wind turbines, biomass, small hydro, municipal solid waste, demand response, and storage units.