904 resultados para Model based control
Resumo:
The way in which electricity networks operate is going through a period of significant change. Renewable generation technologies are having a growing presence and increasing penetrations of generation that are being connected at distribution level. Unfortunately, a renewable energy source is most of the time intermittent and needs to be forecasted. Current trends in Smart grids foresee the accommodation of a variety of distributed generation sources including intermittent renewable sources. It is also expected that smart grids will include demand management resources, widespread communications and control technologies required to use demand response are needed to help the maintenance in supply-demand balance in electricity systems. Consequently, smart household appliances with controllable loads will be likely a common presence in our homes. Thus, new control techniques are requested to manage the loads and achieve all the potential energy present in intermittent energy sources. This thesis is focused on the development of a demand side management control method in a distributed network, aiming the creation of greater flexibility in demand and better ease the integration of renewable technologies. In particular, this work presents a novel multi-agent model-based predictive control method to manage distributed energy systems from the demand side, in presence of limited energy sources with fluctuating output and with energy storage in house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which manages a limited shared energy resource via a demand side management perspective, using an integrated approach which also involves a power price auction and an appliance loads allocation scheme. The control is applied individually to a set of Thermal Control Areas, demand units, where the objective is to minimize the energy usage and not exceed the limited and shared energy resource, while simultaneously indoor temperatures are maintained within a comfort frame. Thermal Control Areas are overall thermodynamically connected in the distributed environment and also coupled by energy related constraints. The energy split is performed based on a fixed sequential order established from a previous completed auction wherein the bids are made by each Thermal Control Area, acting as demand side management agents, based on the daily energy price. The developed solutions are explained with algorithms and are applied to different scenarios, being the results explanatory of the benefits of the proposed approaches.
Resumo:
Solar photovoltaic systems are an increasing option for electricity production, since they produce electrical energy from a clean renewable energy resource, and over the years, as a result of the research, their efficiency has been increasing. For the interface between the dc photovoltaic solar array and the ac electrical grid is necessary the use of an inverter (dc-ac converter), which should be optimized to extract the maximum power from the photovoltaic solar array. In this paper is presented a solution based on a current-source inverter (CSI) using continuous control set model predictive control (CCS-MPC). All the power circuits and respective control systems are described in detail along the paper and were tested and validated performing computer simulations. The paper shows the simulation results and are drawn several conclusions.
Resumo:
This paper presents a proposal for a management model based on reliability requirements concerning Cloud Computing (CC). The proposal was based on a literature review focused on the problems, challenges and underway studies related to the safety and reliability of Information Systems (IS) in this technological environment. This literature review examined the existing obstacles and challenges from the point of view of respected authors on the subject. The main issues are addressed and structured as a model, called "Trust Model for Cloud Computing environment". This is a proactive proposal that purposes to organize and discuss management solutions for the CC environment, aiming improved reliability of the IS applications operation, for both providers and their customers. On the other hand and central to trust, one of the CC challenges is the development of models for mutual audit management agreements, so that a formal relationship can be established involving the relevant legal responsibilities. To establish and control the appropriate contractual requirements, it is necessary to adopt technologies that can collect the data needed to inform risk decisions, such as access usage, security controls, location and other references related to the use of the service. In this process, the cloud service providers and consumers themselves must have metrics and controls to support cloud-use management in compliance with the SLAs agreed between the parties. The organization of these studies and its dissemination in the market as a conceptual model that is able to establish parameters to regulate a reliable relation between provider and user of IT services in CC environment is an interesting instrument to guide providers, developers and users in order to provide services and secure and reliable applications.
Resumo:
MOTIVATION: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. RESULTS: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as 'stepping stones' for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or 'trigger' is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
Urinary schistosomiasis remains a significant burden for Africa and the Middle East. The success of population-based control programs will depend on their impact, over many years, on Schistosoma haematobium reinfection and associated disease. In a multi-year (1984-1992) control program in Kenya, we examined risk for S. haematobium reinfection and late disease during and after annual school-based treatment. In this setting, long-term risk of new infection was independently associated with location, age, hematuria, and incomplete treatment, but not with sex or frequency of water contact. Thus, very local environmental features and age-related factors played an important role in S. haematobium transmission, such that population-based control programs should optimally tailor their efforts to local conditions on a village-by-village basis. In 2001-2002, the late benefits of earlier participation in school-based antischistosomal therapy were estimated in a cohort of formerly-treated adult residents compared to never-treated adults from the same villages. Among age-matched subjects, current infection prevalence was lower among those who had received remote therapy. In addition, prevalence of bladder abnormality was lower in the treated group, who were free of severe bladder disease. Treatment of affected adults resulted in rapid resolution of infection and any detectable bladder abnormalities. We conclude that continued treatment into adulthood, as well as efforts at long-term prevention of infection (transmission control) are necessary to achieve optimal morbidity control in affected communities.
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system
Resumo:
Los sistemas de radio cognitivos son una solución a la deficiente distribución del espectro inalámbrico de frecuencias. Usando acceso dinámico al medio, los usuarios secundarios pueden comunicarse en canales de frecuencia disponibles, mientras los usuarios asignados no están usando dichos canales. Un buen sistema de mensajería de control es necesario para que los usuarios secundarios no interfieran con los usuarios primarios en las redes de radio cognitivas. Para redes en donde los usuarios son heterogéneos en frecuencia, es decir, no poseen los mismos canales de frecuencia para comunicarse, el grupo de canales utilizado para transmitir información de control debe elegirse cuidadosamente. Por esta razón, en esta tesis se estudian las ideas básicas de los esquemas de mensajería de control usados en las redes de radio cognitivas y se presenta un esquema adecuado para un control adecuado para usuarios heterogéneos en canales de frecuencia. Para ello, primero se presenta una nueva taxonomía para clasificar las estrategias de mensajería de control, identificando las principales características que debe cumplir un esquema de control para sistemas heterogéneos en frecuencia. Luego, se revisan diversas técnicas matemáticas para escoger el mínimo número de canales por los cuales se transmite la información de control. Después, se introduce un modelo de un esquema de mensajería de control que use el mínimo número de canales y que utilice las características de los sistemas heterogéneos en frecuencia. Por último, se comparan diversos esquemas de mensajería de control en términos de la eficiencia de transmisión.
Resumo:
Customer choice behavior, such as 'buy-up' and 'buy-down', is an importantphe-nomenon in a wide range of industries. Yet there are few models ormethodologies available to exploit this phenomenon within yield managementsystems. We make some progress on filling this void. Specifically, wedevelop a model of yield management in which the buyers' behavior ismodeled explicitly using a multi-nomial logit model of demand. Thecontrol problem is to decide which subset of fare classes to offer ateach point in time. The set of open fare classes then affects the purchaseprobabilities for each class. We formulate a dynamic program todetermine the optimal control policy and show that it reduces to a dynamicnested allocation policy. Thus, the optimal choice-based policy caneasily be implemented in reservation systems that use nested allocationcontrols. We also develop an estimation procedure for our model based onthe expectation-maximization (EM) method that jointly estimates arrivalrates and choice model parameters when no-purchase outcomes areunobservable. Numerical results show that this combined optimization-estimation approach may significantly improve revenue performancerelative to traditional leg-based models that do not account for choicebehavior.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
Identifying the geographic distribution of populations is a basic, yet crucial step in many fundamental and applied ecological projects, as it provides key information on which many subsequent analyses depend. However, this task is often costly and time consuming, especially where rare species are concerned and where most sampling designs generally prove inefficient. At the same time, rare species are those for which distribution data are most needed for their conservation to be effective. To enhance fieldwork sampling, model-based sampling (MBS) uses predictions from species distribution models: when looking for the species in areas of high habitat suitability, chances should be higher to find them. We thoroughly tested the efficiency of MBS by conducting an important survey in the Swiss Alps, assessing the detection rate of three rare and five common plant species. For each species, habitat suitability maps were produced following an ensemble modeling framework combining two spatial resolutions and two modeling techniques. We tested the efficiency of MBS and the accuracy of our models by sampling 240 sites in the field (30 sitesx8 species). Across all species, the MBS approach proved to be effective. In particular, the MBS design strictly led to the discovery of six sites of presence of one rare plant, increasing chances to find this species from 0 to 50%. For common species, MBS doubled the new population discovery rates as compared to random sampling. Habitat suitability maps coming from the combination of four individual modeling methods predicted well the species' distribution and more accurately than the individual models. As a conclusion, using MBS for fieldwork could efficiently help in increasing our knowledge of rare species distribution. More generally, we recommend using habitat suitability models to support conservation plans.
Resumo:
We present a machine learning approach to modeling bowing control parametercontours in violin performance. Using accurate sensing techniqueswe obtain relevant timbre-related bowing control parameters such as bowtransversal velocity, bow pressing force, and bow-bridge distance of eachperformed note. Each performed note is represented by a curve parametervector and a number of note classes are defined. The principal componentsof the data represented by the set of curve parameter vectors are obtainedfor each class. Once curve parameter vectors are expressed in the new spacedefined by the principal components, we train a model based on inductivelogic programming, able to predict curve parameter vectors used for renderingbowing controls. We evaluate the prediction results and show the potentialof the model by predicting bowing control parameter contours from anannotated input score.
Resumo:
Excitation-continuous music instrument control patterns are often not explicitly represented in current sound synthesis techniques when applied to automatic performance. Both physical model-based and sample-based synthesis paradigmswould benefit from a flexible and accurate instrument control model, enabling the improvement of naturalness and realism. Wepresent a framework for modeling bowing control parameters inviolin performance. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing control parameter signals.We model the temporal contour of bow velocity, bow pressing force, and bow-bridge distance as sequences of short Bézier cubic curve segments. Considering different articulations, dynamics, and performance contexts, a number of note classes are defined. Contours of bowing parameters in a performance database are analyzed at note-level by following a predefined grammar that dictates characteristics of curve segment sequences for each of the classes in consideration. As a result, contour analysis of bowing parameters of each note yields an optimal representation vector that is sufficient for reconstructing original contours with significant fidelity. From the resulting representation vectors, we construct a statistical model based on Gaussian mixtures suitable for both the analysis and synthesis of bowing parameter contours. By using the estimated models, synthetic contours can be generated through a bow planning algorithm able to reproduce possible constraints caused by the finite length of the bow. Rendered contours are successfully used in two preliminary synthesis frameworks: digital waveguide-based bowed stringphysical modeling and sample-based spectral-domain synthesis.
Resumo:
Pulsewidth-modulated (PWM) rectifier technology is increasingly used in industrial applications like variable-speed motor drives, since it offers several desired features such as sinusoidal input currents, controllable power factor, bidirectional power flow and high quality DC output voltage. To achieve these features,however, an effective control system with fast and accurate current and DC voltage responses is required. From various control strategies proposed to meet these control objectives, in most cases the commonly known principle of the synchronous-frame current vector control along with some space-vector PWM scheme have been applied. Recently, however, new control approaches analogous to the well-established direct torque control (DTC) method for electrical machines have also emerged to implement a high-performance PWM rectifier. In this thesis the concepts of classical synchronous-frame current control and DTC-based PWM rectifier control are combined and a new converter-flux-based current control (CFCC) scheme is introduced. To achieve sufficient dynamic performance and to ensure a stable operation, the proposed control system is thoroughly analysed and simple rules for the controller design are suggested. Special attention is paid to the estimationof the converter flux, which is the key element of converter-flux-based control. Discrete-time implementation is also discussed. Line-voltage-sensorless reactive reactive power control methods for the L- and LCL-type line filters are presented. For the L-filter an open-loop control law for the d-axis current referenceis proposed. In the case of the LCL-filter the combined open-loop control and feedback control is proposed. The influence of the erroneous filter parameter estimates on the accuracy of the developed control schemes is also discussed. A newzero vector selection rule for suppressing the zero-sequence current in parallel-connected PWM rectifiers is proposed. With this method a truly standalone and independent control of the converter units is allowed and traditional transformer isolation and synchronised-control-based solutions are avoided. The implementation requires only one additional current sensor. The proposed schemes are evaluated by the simulations and laboratory experiments. A satisfactory performance and good agreement between the theory and practice are demonstrated.
Resumo:
A new damage model based on a micromechanical analysis of cracked [± θ / 90n ]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented