953 resultados para Mixed-acid Fermentation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugars affect the gelatinization of starch, with the effect varying significantly between sugars. Since many food products contain a mixture of sugar sources, it is important to understand how their mixtures affect starch gelatinization. In a Rapid Visco Analyser study of maize starch gelatinization, changing proportions in binary mixtures of refined sugars saw a largely proportionate change in starch gelatinization properties. However, binary mixture of pure sugars and honey, or a model honey system (the main sugars in honey) and honey responded differently. Generally, replacing 25% or 50% of the refined sugar or model honey system with honey gave a large change in starch gelatinization properties, while further increases in honey level had little further effect. Differences between honey and buffered model honey system (either gluconic acid, or a mixture of citric acid and di-sodium phosphate) showed the sensitivity of starch gelatinization to the composition of the nonsaccharide component. (c) 2004 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyaluronic acid is routinely produced through fermentation of both Group A and C streptococci. Despite significant production costs associated with short fermentations and removal of contaminating proteins released during entry into stationary phase, hyaluronic acid is typically produced in batch rather than continuous culture. The main reason is that hyaluronic acid synthesis has been found to be unstable in continuous culture except at very low dilution rates. Here, we investigated the mechanisms underlying this instability and developed a stable, high dilution rate (0.4 h(-1)) chemostat process for both chemically defined and complex media operating for more than 150 h of production. In chemically defined medium, the product yield was 25% higher in chemostat cultures than in conventional batch culture when arginine or glucose was the limiting substrate. In contrast, glutamine limitation resulted in higher ATP requirements and a yield similar to that observed in batch culture. In complex, glucose-limited medium, ATP requirements were greatly reduced but biomass synthesis was favored over hyaluronic acid and no improvement in hyaluronic acid yield was observed. The successful establishment of continuous culture at high dilution rate enables both commercial production at reduced cost and a more rational characterization and optimization of hyaluronic acid production in streptococci. (c) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyaluronic acid (HA) is a commercially valuable medical biopolymer increasingly produced through microbial fermentation. Viscosity limits product yield and the focus of research and development has been on improving the key quality parameters, purity and molecular weight. Traditional strain and process optimisation has yielded significant improvements, but appears to have reached a limit. Metabolic engineering is providing new opportunities and HA produced in a heterologous host is about to enter the market. In order to realise the full potential of metabolic engineering, however, greater understanding of the mechanisms underlying chain termination is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) catalyzes two steps in the biosynthesis of branched-chain amino acids. Amino acid sequence comparisons across species reveal that there are two types of this enzyme: a short form (Class 1) found in fungi and most bacteria, and a long form (Class 11) typical of plants. Crystal structures of each have been reported previously. However, some bacteria such as Escherichia coli possess a long form, where the amino acid sequence differs appreciably from that found in plants. Here, we report the crystal structure of the E. coli enzyme at 2.6 A resolution, the first three-dimensional structure of any bacterial Class 11 KARI. The enzyme consists of two domains, one with mixed alpha/beta structure, which is similar to that found in other pyridine nucleotide-dependent dehydrogenases. The second domain is mainly alpha-helical and shows strong evidence of internal duplication. Comparison of the active sites between KARI of E. coli, Pseudomonas aeruginosa, and spinach shows that most residues occupy conserved positions in the active site. E. coli KARI was crystallized as a tetramer, the likely biologically active unit. This contrasts with P. aeruginosa KARI, which forms a dodecamer, and spinach KARI, a dimer. In the E. coli KARI tetramer, a novel subunit-to-subunit interacting surface is formed by a symmetrical pair of bulbous protrusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity of a silica-supported BF3–methanol solid acid catalyst in the cationic polymerisation of an industrial aromatic C9 feedstock has been investigated. Reuse has been achieved under continuous conditions. Titration of the catalyst acid sites with triethylphosphine oxide (TEPO) in conjunction with 31P MAS NMR shows the catalyst to have two types of acid sites. Further analysis with 2,6 di-tert-butyl-4-methylpyridine (DBMP) has revealed the majority of these acid sites to be Brønsted in nature. The role of α-methylstyrene in promoting resin polymerisation via chain transfer is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly- and mono-unsaturated FAs increase with age. Circulating TNF-α and IL-6 concentrations increased with age, whereas IL-10 and TGF-β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF-β1 concentrations, and higher C16:0 were associated with higher TNF-α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro-inflammatory cytokines in response to phorbol myristate acetate-induced differentiation through ceramide-dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro-resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti-inflammatory macrophages through metabolic reprogramming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly- and mono-unsaturated FAs increase with age. Circulating TNF-α and IL-6 concentrations increased with age, whereas IL-10 and TGF-β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF-β1 concentrations, and higher C16:0 were associated with higher TNF-α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro-inflammatory cytokines in response to phorbol myristate acetate-induced differentiation through ceramide-dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro-resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti-inflammatory macrophages through metabolic reprogramming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5–2.5 nm. The host-guest association constant Ka was 1,639 M−1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lactic acid bacteria expolysaccharides (LAB-EPS), in particular those formed from sucrose have the potential to improve food and beverage rheology and enhance their sensory properties potentially replacing or reducing expensive hydrocolloids currently used as improvers in food and beverage industries. Addition of sucrose not only enables EPS formation but also affects organic acid formation, thus influencing the sensory properties of the resulting food/beverage products. The first part of the study the organoleptic modulation of barley malt derived wort fermented using in situ produced bacterial polysaccharides has been investigated. Weisella cibaria MG1 was capable to produce exopolysaccharides during sucrosesupplemented barley malt derived wort fermentation. Even though the strain dominated the (sucrose-supplemented) wort fermentation, it was found to produce EPS (14.4 g l-1) with lower efficiency than in SucMRS (34.6 g l-1). Higher maltose concentration in wort led to the increased formation of oligosaccharide (OS) at the expense of EPS. Additionally, small amounts of organic acids were formed and ethanol remained below 0.5% (v/v). W. cibaria MG1 fermented worts supplemented with 5 or 10% sucrose displayed a shear-thinning behaviour indicating the formation of polymers. This report showed how novel and nutritious LAB fermented wort-base beverage with prospects for further advancements can be formulated using tailored microbial cultures. In the next step, the impact of exopolysaccharide-producing Weissella cibaria MG1 on the ability to improve rheological properties of fermented plant-based milk substitute plant based soy and quinoa grain was evaluated. W. cibaria MG1 grew well in soy milk, exceeding a cell count of log 8 cfu/g within 6 h of fermentation. The presence of W. cibaria MG1 led to a decrease in gelation and fermentation time. EPS isolated from soy yoghurts supplemented with sucrose were higher in molecular weight (1.1 x 108 g/mol vs 6.6 x 107 g/mol), and resulted in reduced gel stiffness (190 ± 2.89 Pa vs 244 ± 15.9 Pa). Soy yoghurts showed typical biopolymer gels structure and the network structure changed to larger pores and less cross-linking in the presence of sucrose and increasing molecular weight of the EPS. In situ investigation of Weissella cibaria MG1 producing EPS on quinoa-based milk was performed. The production of quinoa milk, starting from wholemeal quinoa flour, was optimised to maximise EPS production. On doing that, enzymatic destructuration of protein and carbohydrate components of quinoa milk was successfully achieved applying alpha-amylase and proteases treatments. Fermented wholemeal quinoa milk using Weissella cibaria MG1 showed high viable cell counts (>109 cfu/mL), a pH of 5.16, and significantly higher water holding capacity (WHC, 100 %), viscosity (> 0. 5 Pa s) and exopolysaccharide (EPS) amount (40 mg/L) than the chemically acidified control. High EPS (dextran) concentration in quinoa milk caused earlier aggregation because more EPS occupy more space, and the chenopodin were forced to interact with each other. Direct observation of microstructure in fermented quinoa milk indicated that the network structures of EPS-protein could improve the texture of fermented quinoa milk. Overall, Weissella cibaria MG1 showed favorable technology properties and great potential for further possible application in the development of high viscosity fermented quinoa milk. The last part of the study investigate the ex-situ LAB-EPS (dextran) application compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. Three hydrocolloids, xanthan gum, dextran and hydroxypropyl methylcellulose, were incorporated into bread recipes based on high-protein flours, low-protein flours and coarse wholemeal flour. Hydrocolloid levels of 0–5 % (flour basis) were used in bread recipes to test the water absorption. The quality parameters of dough (farinograph, extensograph, rheofermentometre) and bread (specific volume, crumb structure and staling profile) were determined. Results showed that xanthan had negative impact on the dough and bread quality characteristics. HPMC and dextran generally improved dough and bread quality and showed dosage dependence. Volume of low-protein flour breads were significantly improved by incorporation of 0.5 % of the latter two hydrocolloids. However, dextran outperformed HPMC regarding initial bread hardness and staling shelf life regardless the flour applied in the formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon isotopic signatures (d30Si) of water column silicic acid (Si(OH)4) were measured in the Southern Ocean, along a meridional transect from South Africa (Subtropical Zone) down to 57° S (northern Weddell Gyre). This provides the first reported data of a summer transect across the whole Antarctic Circumpolar Current (ACC). d30Si variations are large in the upper 1000 m, reflecting the effect of the silica pump superimposed upon meridional water transfer across the ACC: the transport of Antarctic surface waters northward by a net Ekman drift and their convergence and mixing with warmer upper-ocean Si-depleted waters to the north. Using Si isotopic signatures, we determine different mixing interfaces: the Antarctic Surface Water (AASW), the Antarctic Intermediate Water (AAIW), and thermoclines in the low latitude areas. The residual silicic acid concentrations of end-members control the d30Si alteration of the mixing products and with the exception of AASW, all mixing interfaces have a highly Si-depleted mixed layer end-member. These processes deplete the silicic acid AASW concentration northward, across the different interfaces, without significantly changing the AASW d30Si composition. By comparing our new results with a previous study in the Australian sector we show that during the circumpolar transport of the ACC eastward, the d30Si composition of the silicic acid pools is getting slightly, but significantly lighter from the Atlantic to the Australian sectors. This results either from the dissolution of biogenic silica in the deeper layers and/or from an isopycnal mixing with the deep water masses in the different oceanic basins: North Atlantic Deep Water in the Atlantic, and Indian Ocean deep water in the Indo-Australian sector. This isotopic trend is further transmitted to the subsurface waters, representing mixing interfaces between the surface and deeper layers. Through the use of d30Si constraints, net biogenic silica production (representative of annual export), at the Greenwich Meridian is estimated to be 5.2 ± 1.3 and 1.1 ± 0.3 mol Si/m**2 for the Antarctic Zone and Polar Front Zone, respectively. This is in good agreement with previous estimations. Furthermore, summertime Si-supply into the mixed layer of both zones, via vertical mixing, is estimated to be 1.6 ± 0.4 and 0.1 ± 0.5 mol Si/m**2, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette étude est destinée à la production et à la caractérisation des composites d’acide polylactique (PLA) et des fibres naturelles (lin, poudre de bois). Le moussage du PLA et ses composites ont également été étudiés afin d’évaluer les effets des conditions de moulage par injection et du renfort sur les propriétés finales de ces matériaux. Dans la première partie, les composites constitués de PLA et des fibres de lin ont été produits par extrusion suivit par un moulage en injection. L’effet de la variation du taux de charge (15, 25 et 40% en poids) sur les caractéristiques morphologique, mécanique, thermique et rhéologique des composites a été évalué. Dans la deuxième étape, la poudre de bois (WF) a été choisie pour renforcer le PLA. La préparation des composites de PLA et WF a été effectuée comme dans la première partie et une série complète de caractérisations morphologique, mécanique, thermique et l’analyse mécanique dynamique ont été effectués afin d’obtenir une évaluation complète de l’effet du taux de charge (15, 25 et 40% en poids) sur les propriétés du PLA. Finalement, la troisième partie de cette étude porte sur les composites de PLA et de renfort naturel afin de produire des composites moussés. Ces mousses ont été réalisées à l’aide d’un agent moussant exothermique (azodicarbonamide) via le moulage par injection, suite à un mélange du PLA et de fibres naturelles. Dans ce cas, la charge d’injection (quantité de matière injectée dans le moule: 31, 33, 36, 38 et 43% de la capacité de la presse à injection) et la concentration en poudre de bois (15, 25 et 40% en poids) ont été variées. La caractérisation des propriétés mécanique et thermique a été effectuée et les résultats ont démontré que les renforts naturels étudiés (lin et poudre de bois) permettaient d’améliorer les propriétés mécaniques des composites, notamment le module de flexion et la résistance au choc du polymère (PLA). En outre, la formation de la mousse était également efficace pour le PLA vierge et ses composites car les masses volumiques ont été significativement réduites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this study was to develop rice starch (RS), ι-carrageenan (ι-car) based film. Different formulations of RS (1-4%, w/w), ι-car (0.5-2%, w/w) was blended with stearic acid (SA; 0.3-0.9%, w/w) and glycerol (1%, w/w) as a plasticizer. The effect of film ingredients on the thickness, water vapour permeability (WVP), film solubility (FS), moisture content (MC), colour, film opacity (FO), tensile strength (TS), elongation-at-break (EAB) of film was examined. Interactions and miscibility of partaking components was studied by using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Hydrocolloid suspension solution of mix polysaccharides imparted a significant impact (p<0.05) on the important attributes of resulting edible film. TS and EAB of film were improved significantly (p<0.05) when ι-car was increased in the film matrix. Formulation F1 comprising 2% ι-car, 2% 33 RS, 0.3% SA, Gly 30% w/w and 0.2% surfactant (tween®20) provided film with good 34 physical, mechanical and barrier properties. FT-IR and XRD results reveal that molecular interactions between RS-ι-car have a great impact on the film properties confining the compatibility and miscibility of mixed polysaccharide. Results of the study offers new biodegradable formulation for application on fruit and vegetables.