952 resultados para Minamoto, Yoshitsune, 1159-1189


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract BACKGROUND: Genetic processes underlying fetal lung development and maturation are incompletely understood. Better knowledge of these processes would provide insights into the causes of lung malformations and prevention of respiratory distress syndrome and the potential adverse effects of glucocorticoids. Hox genes are involved in the lung branching morphogenesis and maturation of respiratory epithelium, but their expression pattern remains to be defined. OBJECTIVES: We hypothesized that genes involved in lung branching would be downregulated during early development, whereas those involved in maturation would be unchanged or upregulated. METHODS: TaqMan real-time primers and probes were designed for all 39 murine Hox genes, and the murine SP-B gene and transcription profiles of these genes were obtained from whole lungs isolated at e14.5, e16.5, e18.5, e19.5 and postnatal days 1 and 20. RESULTS: Hox genes in clusters A and B, specifically those between paralog groups 3 and 7, were the most represented, with Hoxa4 and Hoxa5 being the most highly transcribed. A wave of reduced transcription in 16 Hox genes, coincident with increased SP-B transcription, was observed with advancing gestation. Consistently high transcription of Hoxa5 from e14.5 to postnatal day 20 may indicate that sustained transcription is required for normal lung maturation. When e15.5 lungs were cultured with dexamethasone, Hoxb6, Hoxb7 and Hoxb8 levels were significantly upregulated, creating the potential for modulation of diverse downstream target genes. CONCLUSIONS: Improved understanding of the genetic processes underlying lung development afforded by our Q-PCR platform may allow development of more specific methods for inducing fetal lung maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The significantly higher surface expression of the surface heat-shock protein receptor CD91 on monocytes of human immunodeficiency virus type-1 (HIV-1)-infected, long-term nonprogressors suggests that HIV-1 antigen uptake and cross-presentation mediated by CD91 may contribute to host anti-HIV-1 defenses and play a role in protection against HIV-1 infection. To investigate this further, we performed phenotypic analysis to compare CD91 surface expression on CD14+ monocytes derived from a cohort of HIV-1-exposed seronegative (ESN) subjects, their seropositive (SP) partners, and healthy HIV-1-unexposed seronegative (USN) subjects. The median fluorescent intensity (MFI) of CD91 on CD14+ monocytes was significantly higher in ESN compared with SP (P=0.028) or USN (P=0.007), as well as in SP compared with USN subjects (P=0.018). CD91 MFI was not normalized in SP subjects on highly active antiretroviral therapy (HAART) despite sustainable, undetectable plasma viraemia. Data in three SP subjects experiencing viral rebounds following interruption of HAART showed low CD91 MFI comparable with levels in USN subjects. There was a significant positive correlation between CD91 MFI and CD8+ T cell counts in HAART-naïve SP subjects (r=0.7, P=0.015). Increased surface expression of CD91 on CD14+ monocytes is associated with the apparent HIV-1 resistance that is observed in ESN subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic fibrosis represents the final common pathway in progressive renal disease. Myofibroblasts deposit the constituents of renal scar, thus crippling renal function. It has recently emerged that an important source of these pivotal effector cells is the injured renal epithelium. This review concentrates on the process of epithelial-mesenchymal transition (EMT) and its regulation. The role of the developmental gene, gremlin, which is reactivated in adult renal disease, is the subject of particular focus. This member of the cysteine knot protein superfamily is critical to the process of nephrogenesis but quiescent in normal adult kidney. There is increasing evidence that gremlin expression reactivates in diabetic nephropathy, and in the diseased fibrotic kidney per se. Known to antagonize members of the bone morphogenic protein (BMP) family, gremlin may also act downstream of TGF-beta in induction of EMT. An increased understanding of the extracellular modulation of EMT and, in particular, of the gremlin-BMP axis may result in strategies that can halt or reverse the devastating progression of chronic renal fibrosis. Copyright (c) 2006 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Intermedin (IMD), a novel cardiac peptide related to adrenomedullin (AM), protects against myocardial ischemia-reperfusion injury and attenuates ventricular remodelling. IMD’s actions are mediated by a calcitonin receptor-like receptor in association with receptor activity modifying proteins (RAMPs 1-3). Aim/method: using the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rat at 20 weeks of age, to examine (i) the presence of myocardial oxidative stress and concentric hypertrophy; (ii) expression of IMD, AM and receptor components. Results: In left and right ventricular cardiomyocytes from SHR vs. WKY cell width (26% left, 15% right) and mRNA expression of hypertrophic markers ANP (2.7 fold left, 2.7 fold right) and BNP (2.2 fold left, 2.0 fold right) were enhanced. In left ventricular cardiomyocytes only (i) oxidative stress was indicated by increased membrane protein carbonyl content (71%) and augmented production of O2- anion (64%); (ii) IMD (6.8 fold), RAMP1 (2.5 fold) and RAMP3 (2.0 fold) mRNA was increased while AM and RAMP2 mRNA was not altered; (iii) abundance of RAMP1 (by 48%), RAMP2 (by 41%) and RAMP3 (by 90%) monomers in cell membranes was decreased. Conclusion: robust augmentation of IMD expression in hypertrophied left ventricular cardiomyocytes indicates a prominent role for this counter-regulatory peptide in the adaptation of the SHR myocardium to the stresses imposed by chronic hypertension. The local concentration and action of IMD may be further enhanced by down-regulation of NEP within the left ventricle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: Somatostatin-14 (SRIF-14), a neuropeptide co-stored with acetylcholine in the cardiac parasympathetic innervation, exerts both positive and negative influences directly on contraction of ventricular cardiomyocytes, indicative of involvement of more than one of five known SRIF (SSTR) receptor subtypes. The aim was to characterize receptor subtype expression in adult rat ventricular cardiomyocytes and to investigate the influence of a series of SRIF (SSTR) subtype-selective agonists on contractile parameters. Methods: mRNA and protein expression of each receptor subtype were quantified by RT-PCR and immunoblotting respectively; for contraction studies, cells were stimulated at 0.5 Hz under basal conditions and in the presence of isoprenaline (ISO, 10-8M). Results: all five SRIF (SSTR) receptor subtypes were expressed in cardiomyocytes although SRIF1A (SSTR2) and SRIF2A (SSTR1) were less abundant than the other subtypes. L803087 (10-8M), a SRIF2B (SSTR4) agonist, attenuated ISO-stimulated peak contractile amplitude and prolonged relaxation time (T50). L796778 (10-7M), a SRIF1C (SSTR3) agonist, augmented basal and ISO-stimulated peak contractile amplitude; L779976 (10-8M) and L817818 (10-9M), agonists at SRIF1A (SSTR2) and SRIF1B (SSTR5) receptors, respectively, also augmented ISO-stimulated peak amplitude. Conclusion: these data support involvement of SRIF2B (SSTR4) receptors in the negative contractile effects of SRIF-14, while one or more of the three SRIF1 receptor subtypes (SSTR2, 3 or 5) may contribute to the positive contractile effects of SRIF-14.