781 resultados para Microstrip antennas
Resumo:
This work aims to investigate the behavior of fractal and helical elements structures in planar microstrip. In particular, the frequency selective surfaces (FSSs) had changed its conventional elements to fractal and helical formats. The dielectric substrate used was fiberglass (FR-4) and has a thickness of 1.5 mm, a relative permittivity 4.4 and tangent loss equal to 0.02. For FSSs, was adopting the Dürer’s fractal geometry and helical geometry. To make the measurements, we used two antennas horns in direct line of sight, connected by coaxial cable to the vector network analyzer. Some prototypes were select for built and measured. From preliminary results, it was aimed to find practical applications for structures from the cascading between them. For FSSs with Dürer’s fractal elements was observed behavior provided by the multiband fractal geometry, while the bandwidth has become narrow as the level of iteration fractal increased, making it a more selective frequency with a higher quality factor. A parametric analysis allowed the analysis of the variation of the air layer between them. The cascading between fractal elements structure were considered, presented a tri-band behavior for certain values of the layer of air between them, and find applications in the licensed 2.5GHz band (2.3-2.7) and 3.5GHz band (3.3-3.8). For FSSs with helical elements, six structures were considered, namely H0, H1, H2, H3, H4 and H5. The electromagnetic behavior of them was analyzed separately and cascaded. From preliminary results obtained from the separate analysis of structures, including the cascade, the higher the bandwidth, in that the thickness of the air layer increases. In order to find practical applications for helical structures cascaded, the helical elements structure has been cascaded find applications in the X-band (8.0-12.0) and unlicensed band (5.25-5.85). For numerical and experimental characterization of the structures discussed was used, respectively, the commercial software Ansoft Designer and a vector network analyzer, Agilent N5230A model.
Resumo:
A few years ago, some of the authors of the paper demonstrated the resonance of optical antennas in the visible frequencies. The results of that paper were obtained using experimental techniques that were primarily developed for the measurement of antenna-coupled detectors in the infrared. In the present paper, we show the results of spatial-response mapping obtained by using a dedicated measurement station for the characterization of optical antennas in the visible. At the same time, the bottleneck in the spatial responsivity calculation represented by the beam characterization has been approached from a different perspective. The proposed technique uses a collection of knife edge measurements in order to avoid the use of any model of the laser beam irradiance. By taking all this into account we present the spatial responsivity of optical antennas measured with high spatial resolution in the visible.
Resumo:
This paper reports the results of the on-body experimental tests of a set of four planar differential antennas, originated by design variations of radiating elements with the same shape and characterized by the potential for covering wide and narrow bands. All the antenna designs have been implemented on low-cost FR4 substrate and characterized experimentally through on-body measurements. The results show the impact of the proximity to the human body on antenna performance and the opportunities in terms of potential coverage of wide and narrow bands for future ad hoc designs and implementations through wearable substrates targeting on-body and off-body communication and sensing applications.
Resumo:
We investigate the secrecy performance of dualhop amplify-and-forward (AF) multi-antenna relaying systems over Rayleigh fading channels, by taking into account the direct link between the source and destination. In order to exploit the available direct link and the multiple antennas for secrecy improvement, different linear processing schemes at the relay and different diversity combining techniques at the destination are proposed, namely, 1) Zero-forcing/Maximal ratio combining (ZF/MRC), 2) ZF/Selection combining (ZF/SC), 3) Maximal ratio transmission/MRC (MRT/MRC) and 4) MRT/Selection combining (MRT/SC). For all these schemes, we present new closed-form approximations for the secrecy outage probability. Moreover, we investigate a benchmark scheme, i.e., cooperative jamming/ZF (CJ/ZF), where the secrecy outage probability is obtained in exact closed-form. In addition, we present asymptotic secrecy outage expressions for all the proposed schemes in the high signal-to-noise ratio (SNR) regime, in order to characterize key design parameters, such as secrecy diversity order and secrecy array gain. The outcomes of this paper can be summarized as follows: a) MRT/MRC and MRT/SC achieve a full diversity order of M + 1, ZF/MRC and ZF/SC achieve a diversity order of M, while CJ/ZF only achieves unit diversity order, where M is the number of antennas at the relay. b) ZF/MRC (ZF/SC) outperforms the corresponding MRT/MRC (MRT/SC) in the low SNR regime, while becomes inferior to the corresponding MRT/MRC (MRT/SC) in the high SNR. c) All of the proposed schemes tend to outperform the CJ/ZF with moderate number of antennas, and linear processing schemes with MRC attain better performance than those with SC.
Resumo:
[EN]The increasing use of microstrip technology require more accurate analysis methods like full wave method of moments. However, this involves a great computational effort. To reduce the computation time, an alternative parallel method to analyze irregular microstrip structures is presented in this paper. This method calculates the unknown surface current on the planar structure trough a irregular rectangular division using basis and weighted functions. The parallel algorithm performs the calculus of a [Z] matrix and then solves the system using current densities as the unknowns. This parallel program was implemented in the IBM-SP2 using MPI library.
Resumo:
[EN]This article presents the results obtained in the analysis of irregular microstrip structures using a full wave method of moments scheme. The irregular microstrip structures are divided into rectangular subdomains. The EFIE is discretized an solved over the subdomains using a Galerkin type scheme. Base and weight functions are piece wise sinusoidals (PWS) or triangular. Delta gap voltage generators are used as sources]. Green functions are computed using a freely available library developed by our research group. All the calculations are carried out in the so called ”spatial domain” so there is no need of using regular grids during the discretization process.
Resumo:
Resonant tunnelling diode (RTD) is known to be the fastest electronics device that can be fabricated in compact form and operate at room temperature with potential oscillation frequency up to 2.5 THz. The RTD device consists of a narrow band gap quantum well layer sandwiched between two thin wide band gap barriers layers. It exhibits negative differential resistance (NDR) region in its current-voltage (I-V) characteristics which is utilised in making oscillators. Up to date, the main challenge is producing high output power at high frequencies in particular. Although oscillation frequencies of ~ 2 THz have been already reported, the output power is in the range of micro-Watts. This thesis describes the systematic work on the design, fabrication, and characterisation of RTD-based oscillators in microwave/millimetre-wave monolithic integrated circuits (MMIC) form that can produce high output power and high oscillation frequency at the same time. Different MMIC RTD oscillator topologies were designed, fabricated, and characterised in this project which include: single RTD oscillator which employs one RTD device, double RTDs oscillator which employs two RTD devices connected in parallel, and coupled RTD oscillators which combine the powers of two oscillators over a single load, based on mutual coupling and which can employ up to four RTD devices. All oscillators employed relatively large size RTD devices for high power operation. The main challenge was to realise high oscillation frequency (~ 300 GHz) in MMIC form with the employed large sized RTD devices. To achieve this aim, proper designs of passive structures that can provide small values of resonating inductances were essential. These resonating inductance structures included shorted coplanar wave guide (CPW) and shorted microstrip transmission lines of low characteristics impedances Zo. Shorted transmission line of lower Zo has lower inductance per unit length. Thus, the geometrical dimensions would be relatively large and facilitate fabrication by low cost photolithography. A series of oscillators with oscillation frequencies in the J-band (220 – 325 GHz) range and output powers from 0.2 – 1.1 mW have been achieved in this project, and all were fabricated using photolithography. Theoretical estimation showed that higher oscillation frequencies (> 1 THz) can be achieved with the proposed MMIC RTD oscillators design in this project using photolithography with expected high power operation. Besides MMIC RTD oscillators, reported planar antennas for RTD-based oscillators were critically reviewed and the main challenges in designing high performance integrated antennas on large dielectric constant substrates are discussed in this thesis. A novel antenna was designed, simulated, fabricated, and characterised in this project. It was a bow-tie antenna with a tuning stub that has very wide bandwidth across the J-band. The antenna was diced and mounted on a reflector ground plane to alleviate the effect of the large dielectric constant substrate (InP) and radiates upwards to the air-side direction. The antenna was also investigated for integration with the all types of oscillators realised in this project. One port and two port antennas were designed, simulated, fabricated, and characterised and showed the suitability of integration with the single/double oscillator layout and the coupled oscillator layout, respectively.
Resumo:
This work presents the study of Bull's eye antenna designs, a type of leaky wave antenna (LWA), operating in the 60 GHz band. This band emerged as a new standard for specific terrestrial and space applications because the radio spectrumbecomes more congested up to the millimetre-wave band, starting at 30 GHz. Built on existing Bull's eye antenna designs, novel structures were simulated, fabricated and measured, so as to provide more exibility in the implementation of wireless solutions at this frequency. Firstly, the study of a 60 GHz Bull's eye antenna for straightforward integration onto a CubeSat is presented. An investigation of the design is carried out, from the description of the radiation mechanism supported by simulation results, to the radiation pattern measurement of a prototype which provides a gain of 19.1 dBi at boresight. Another design, based on a modified feed structure, uses a microstrip to waveguide transition to provide easier and inexpensive integration of a Bull's eye antenna onto a planar circuit. Secondly, the design of Bull's eye antennas capable of creating beam deflection and multi-beam is presented. In particular, a detail study of the deflection mechanism is proposed, followed by the demonstration of a Bull's eye antenna generating two separate beams at ±16° away from the boresight. In addition, a novel mechanically steerable Bull's eye antenna, based on the division of the corrugated area in paired sectors is presented. A prototype was fabricated and measured. It generated double beams at ±8° and ±15° from the boresight, and a single boresight beam. Thirdly, a Bull's eye antenna capable of generating two simultaneous orbital angular momentum (OAM) modes l = 3 is proposed. The design is based on a circular travelling wave resonator and would allow channel capacity increase through OAM multiplexing. An improved design based on two stacked OAM Bull's eye antennas capable of producing four orthogonal OAM modes l = (±3,±13) simultaneously is presented. A novel receiving scheme based on discretely sampled partial aperture receivers (DSPAR) is then introduced. This solution could provide a lower windage and a lower cost of implementation than current whole or partial continuous aperture.
Resumo:
Design aspects of a novel beam-reconfigurable pla-nar series-fed array are addressed to achieve beam steering with frequency tunability over a relatively broad bandwidth. The design is possible thanks to the use of the complementary strip-slot, which is an innovative broadly matched microstrip radiator, and the careful selection of the phase shifter parameters.
Resumo:
The main topic of this thesis is about the design and prototyping of automotive antennas that allows Vehicle to Everything (V2X) communications, that is the communication between the vehicle and all what else is relevant. In particular 5G will be an enabling technology for these communications. Vehicular connectivity is a mandatory feature in nowadays car. Typical applications are that one related to the infotainment, i.e. radio or mobile telephone, or security ones, i.e. radars. The antennas that support this type of communications can be divided in two frequency range: the sub-6GHz range and the millimeter wave (mmW) range. Also the 5G standard can be divided in this two frequency ranges. In this work different automotive antennas solutions are presented for both the frequency bands. For the sub-6GHz range two different antennas are presented: a tin sheet 5G-sub6 radiating element and a complete 5G-GNSS-V2X shark fin module. For the mmW frequency band, an automotive PCB planar solution is presented. Since these frequencies are a novelty for the automotive market, satellite communications (SatCom) field has been considered. In SatCom applications mmW solutions are a well-established technology. Thus, also mmW antennas solutions for SatCom applications are here presented.
Resumo:
Este trabalho faz uma análise das estimativas de teores de umidade obtidas com o método Ground Penetrating Radar (GPR) comparativamente às determinadas com os métodos Time Domain Reflectometry (TDR) e gravimétrico. Os dados foram obtidos em dois experimentos diferentes: um experimento controlado em laboratório buscando reproduzir um meio homogêneo onde foram obtidas as medidas de umidade com GPR (antenas de 1 GHz) e TDR, e outro experimento de campo onde foram obtidos dados com GPR (antenas de 200 MHz) e de amostras de solos do local. Para a obtenção das estimativas a partir do método GPR foram analisados os eventos relativos à onda de transmissão direta entre as antenas, onda refratada criticamente e onda refletida em interfaces com diferentes propriedades elétricas.O GPR mostrou-se sensível às variações de umidades presentes nos dois experimentos e apresentou boa correlação com os dados obtidos com TDR (REQM de0,007 m³m-3) e das amostras (REQM de 0,039 m³m-3).
Resumo:
This paper presents an analysis of the performance of a baseband multiple-input single-output (MISO) time reversal ultra-wideband system (TR-UWB) incorporating a symbol spaced decision feedback equalizer (DFE). A semi-analytical performance analysis based on a Gaussian approach is considered, which matched well with simulation results, even for the DFE case. The channel model adopted is based on the IEEE 802.15.3a model, considering correlated shadowing across antenna elements. In order to provide a more realistic analysis, channel estimation errors are considered for the design of the TR filter. A guideline for the choice of equalizer length is provided. The results show that the system`s performance improves with an increase in the number of transmit antennas and when a symbol spaced equalizer is used with a relatively small number of taps compared to the number of resolvable paths in the channel impulse response. Moreover, it is possible to conclude that due to the time reversal scheme, the error propagation in the DFE does not play a role in the system`s performance.
Resumo:
This paper reports on the design and development of a dividing/phasing network for a compact switched-beam array antenna for Land-vehicle mobile satellite communications, The device is formed by a switched radial divider/combiner and 1-bit phase shifters and generates a sufficient number of beams for the proper satellite tracking.
Resumo:
The suitable use of an array antenna at the base station of a wireless communications system can result in improvement in the signal-to-interference ratio (SIR). In general, the SIR is a function of the direction of arrival of the desired signal and depends on the configuration of the array, the number of elements, and their spacing. In this paper, we consider a uniform linear array antenna and study the effect of varying the number of its elements and inter-element spacing on the SIR performance. (C) 2002 Wiley Periodicals, Inc.
Resumo:
A Combined Genetic Algorithm and Method of Moments design methods is presented for the design of unusual near-field antennas for use in Magnetic Resonance Imaging systems. The method is successfully applied to the design of an asymmetric coil structure for use at 190MHz and demonstrates excellent radiofrequency field homogeneity.