973 resultados para Microfluidic Analytical Techniques


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growing concern with the solid residues management, observed in the last decade, due to its huge amount and impact, has motivated the search for recycling processes, where these residues can be reprocessed to generate new products, enlarging the cycle of materials and energy which are present. Among the polymeric residues, there is poly (ethylene terephthalate) (PET). PET is used in food packaging, preferably in the bottling of carbonated beverages. The reintegration of post-consumer PET in half can be considered a productive action mitigation of environmental impacts caused by these wastes and it is done through the preparation of several different products at the origin, i.e. food packaging, with recycling rates increasing to each year. This work focused on the development and characterization mechanical, thermal, thermo-mechanical, dynamic mechanical thermal and morphology of the pure recycled PET and recycled PET composites with glass flakes in the weight fraction of 5%, 10% and 20% processed in a single screw extruder, using the following analytical techniques: thermogravimetry (TG), differential scanning calorimetry (DSC), tensile, Izod impact, Rockwell hardness, Vicat softening temperature, melt flow rate, burn rate, dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). The results of thermal analysis and mechanical properties leading to a positive evaluation, because in the thermograms the addition of glass flakes showed increasing behavior in the initial temperatures of thermal decomposition and melting crystalline, Furthermore was observed growing behavior in the mechanical performance of polymer composites, whose morphological structure was observed by SEM, verifying a good distribution of glass flakes, showing difference orientation in the center and in the surface layer of test body of composites with 10 and 20% of glass flakes. The results of DMTA Tg values of the composites obtained from the peak of tan ä showed little reductions due to poor interfacial adhesion between PET and recycled glass flakes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, one of the most important areas of interest in archeology is the characterization of the submersed cultural heritage. Mediterranean Sea is rich in archaeological findings due to storms, accidents and naval battles since prehistoric times. Chemical analysis of submerged materials is an extremely valuable source of information on the origin and precedence of the wrecks, and also the raw materials employed during the manufacturing of the objects found in these sites. Nevertheless, sometimes it is not possible to extract the archaeological material from the marine environment due to size of the sample, the legislation or preservation purposes. In these cases, the in-situ analysis turns into the only alternative for obtaining information. In spite of this demand, no analytical techniques are available for the in-situ chemical characterization of underwater materials. The versatility of laser-induced breakdown spectroscopy (LIBS) has been successfully tested in oceanography 1. Advantages such as rapid and in situ analysis with no sample preparation make LIBS a suitable alternative for field measurements. To further exploit the inherent advantages of the technology, a mobile fiber-based LIBS platform capable of performing remote measurements up to 50 meters range has been designed for the recognition and identification of artworks in underwater archaeological shipwrecks. The LIBS prototype featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS) 2. The use of multi-pulse excitation allowed an increased laser beam energy (up to 95 mJ) transmitted through the optical fiber. This excitation mode results in an improved performance of the equipment in terms of extended range of analysis (to a depth of 50 m) and a broader variety of samples to be analyzed (i.e., rocks, marble, ceramics and concrete). In the present work, the design and construction considerations of the instrument are reported and its performance is discussed on the basis of the spectral response, the remote irradiance achieved upon the range of analysis and its influence on plasma properties, as well as the effect of the laser pulse duration and purge gas to the LIBS signal. Also, to check the reliability and reproducibility of the instrument for field analysis several robustness tests were performed outside the lab. Finally, the capability of this instrument was successfully demonstrated in an underwater archaeological shipwreck (San Pedro de Alcántara, Malaga).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

“Seeing is believing” the proverb well suits for fluorescent imaging probes. Since we can selectively and sensitively visualize small biomolecules, organelles such as lysosomes, neutral molecules, metal ions, anions through cellular imaging, fluorescent probes can help shed light on the physiological and pathophysiological path ways. Since these biomolecules are produced in low concentrations in the biochemical pathways, general analytical techniques either fail to detect or are not sensitive enough to differentiate the relative concentrations. During my Ph.D. study, I exploited synthetic organic techniques to design and synthesize fluorescent probes with desirable properties such as high water solubility, high sensitivity and with varying fluorescent quantum yields. I synthesized a highly water soluble BOIDPY-based turn-on fluorescent probe for endogenous nitric oxide. I also synthesized a series of cell membrane permeable near infrared (NIR) pH activatable fluorescent probes for lysosomal pH sensing. Fluorescent dyes are molecular tools for designing fluorescent bio imaging probes. This prompted me to design and synthesize a hybrid fluorescent dye with a functionalizable chlorine atom and tested the chlorine re-activity for fluorescent probe design. Carbohydrate and protein interactions are key for many biological processes, such as viral and bacterial infections, cell recognition and adhesion, and immune response. Among several analytical techniques aimed to study these interactions, electrochemical bio sensing is more efficient due to its low cost, ease of operation, and possibility for miniaturization. During my Ph.D., I synthesized mannose bearing aniline molecule which is successfully tested as electrochemical bio sensor. A Ferrocene-mannose conjugate with an anchoring group is synthesized, which can be used as a potential electrochemical biosensor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Elemental analysis can become an important piece of evidence to assist the solution of a case. The work presented in this dissertation aims to evaluate the evidential value of the elemental composition of three particular matrices: ink, paper and glass. In the first part of this study, the analytical performance of LIBS and LA-ICP-MS methods was evaluated for paper, writing inks and printing inks. A total of 350 ink specimens were examined including black and blue gel inks, ballpoint inks, inkjets and toners originating from several manufacturing sources and/or batches. The paper collection set consisted of over 200 paper specimens originating from 20 different paper sources produced by 10 different plants. Micro-homogeneity studies show smaller variation of elemental compositions within a single source (i.e., sheet, pen or cartridge) than the observed variation between different sources (i.e., brands, types, batches). Significant and detectable differences in the elemental profile of the inks and paper were observed between samples originating from different sources (discrimination of 87 – 100% of samples, depending on the sample set under investigation and the method applied). These results support the use of elemental analysis, using LA-ICP-MS and LIBS, for the examination of documents and provide additional discrimination to the currently used techniques in document examination. In the second part of this study, a direct comparison between four analytical methods (µ-XRF, solution-ICP-MS, LA-ICP-MS and LIBS) was conducted for glass analyses using interlaboratory studies. The data provided by 21 participants were used to assess the performance of the analytical methods in associating glass samples from the same source and differentiating different sources, as well as the use of different match criteria (confidence interval (±6s, ±5s, ±4s, ±3s, ±2s), modified confidence interval, t-test (sequential univariate, p=0.05 and p=0.01), t-test with Bonferroni correction (for multivariate comparisons), range overlap, and Hotelling’s T2 tests. Error rates (Type 1 and Type 2) are reported for the use of each of these match criteria and depend on the heterogeneity of the glass sources, the repeatability between analytical measurements, and the number of elements that were measured. The study provided recommendations for analytical performance-based parameters for µ-XRF and LA-ICP-MS as well as the best performing match criteria for both analytical techniques, which can be applied now by forensic glass examiners.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Druj Aeterni is a large chamber ensemble piece for flute, clarinet, French horn, two trumpets, piano, two percussionists, string quintet, and electric bass. My composition integrates three intellectual pursuits and interests, ancient mythology, cosmology, and mathematics. The title of the piece uses Latin and the language of the Avesta, the holy book of Zoroastrianism, and comments upon a philosophical perspective based in string theory. I abstract the cosmological implications of string theory, apply them to the terminology and theology of Zoroastrianism, and then structure the composition in consideration of a possible reconciliation. The analysis that follows incorporates analytical techniques similar to David Cope’s style of Vectoral Analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho de investigação centra-se no contributo dos exames de superfície e nas análises micro-analíticas no estudo de vinte e uma pinturas atribuídas à oficina de Frei Carlos, um dos grandes Mestres Luso-Flamengos ativos em território Nacional durante a primeira metade do século XVI. A "Pintura Luso-Flamenga" é uma expressão comummente usada na história da pintura Portuguesa do primeiro terço do século XVI e no seu sentido mais básico designa o trabalho de mestres flamengos que se instalaram em Portugal durante o reinado de D. Manuel I (1495- 1521) contribuindo decisivamente para o processo de renovação da pintura Portuguesa na época. O estudo integrado combina a pesquisa histórica em fontes documentais com exames de superfície e de caracterização material das obras de arte. O estudo material das pinturas foi realizado através de microscopia ótica, microscopia de infravermelhos com transformada de Fourier, espectroscopia de micro-Raman, microscopia eletrónica de varrimento acoplada com espectrometria de energia dispersiva de raios X, micro- difração de raios-X, cromatografia líquida de alta eficiência e pirólise acoplada à cromatografia gasosa /espectrometria de massa. Esta investigação envolveu técnicas complementares de análise de superfície e de ponto no estudo técnico e material das preparações, imprimitura, desenho subjacente, camadas pictóricas e sucessões estratigráficas, dando a conhecer os materiais utilizados na execução técnica das pinturas e evidenciando especificidades técnicas da produção artística. Este estudo pretende inclusivamente evidenciar alguns detalhes técnicos do artista que possivelmente estão relacionados com a herança das práticas Flamengas. O conhecimento de algumas particularidades da técnica deste Mestre também permitiu estabelecer comparações com duas pinturas que haviam sido atribuídas, com algumas reservas, a esta oficina de pintura Luso-Flamenga. Mais recentemente, como resultado de um estudo colaborativo, foi realizada uma ampla campanha de reflectografia infravermelhos, introduzindo novos dados acerca da execução técnica do desenho subjacente, o que contribuiu para diferenciar, nestas duas pinturas, outra "mão", atribuída então a um seguidor de Frei Carlos. Esta investigação introduz um novo e profundo conhecimento sobre a Oficina de Frei Carlos, permitindo estabelecer comparações com a obra do seu seguidor e com uma pintura também atribuída a esta oficina e que incorpora o Museu da National Gallery (NG5594), evidenciando os materiais utilizados na técnica de produção artística e especificidades técnicas aliadas aos processos criativos/ construtivos que permitem estabelecer os pontos de contacto e de diferenciação entre estas obras; Varieties and styles in the works attributed to Frei Carlos - new perspectives Abstract: This investigation is focused on the contributions of surface exams and micro-analytical research in the study of twenty one paintings attributed to Frei Carlos workshop, one of the most important Portuguese-Flemish painters active in our country during the first half of sixteen Century. "Portuguese-Flemish Painting" is a common expression used in the history of Portuguese painting of the first third of the sixteenth century and in its most basic meaning designates the work of Flemish masters who settled in Portugal during the reign of King Manuel I (1495-1521) contributing decisively to the process of renewal of Portuguese painting at the time. The integrated approach combines historical research on documental sources with surface examination and material characterization of the paintings by using state-of-art analytical techniques. Microanalysis was carried out by optical microscopy, micro-Fourier-transform infrared-spectroscopy, micro-Raman spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectrometry, micro-X-ray diffraction analysis, high performance liquid chromatography and Pyrolysis gas chromatography mass spectrometry. This complementary surface and analytical research was involved in the technical and material characterization of grounds, underdrawings, primings, paint layers and its multi-layered build-up, providing access to the painter´s materials used in the technical execution of the paintings and details of the technique of artistic production. This study also intends to expose some usual details of the artist’s technique which are possibly related to the Master´s Flemish influence. The knowledge of some particularities of the Master´s technique also allowed a new comparison with two paintings that had been attributed with some reserves to this Portuguese-Flemish workshop. More recently, as a result of a collaborative study, an extensive infrared reflectography campaign was made, giving new data concerning underdrawings technical execution and contributing to differentiate, in these two paintings, another “hand”, attributed to a follower of Frei Carlos. Complementary analytical research also added a new and deep insight into Frei Carlos workshop, his follower and a panel that still attributed to Frei Carlos workshop that integrates the National Gallery´s Museum (NG5594), evidencing the materials used in technical production, their models and sources of artistic inspiration, techniques and pictorial construction procedures that could specifically relate or distinguish between them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evaluating the nature of the earliest, often controversial, traces of life in the geological record (dating to the Palaeoarchaean, up to ~3.5 billion years before the present) is of fundamental relevance for placing constraints on the potential that life emerged on Mars at approximately the same time (the Noachian period). In their earliest histories, the two planets shared many palaeoenvironmental similarities, before the surface of Mars rapidly became inhospitable to life as we know it. Multi-scalar, multi-modal analyses of fossiliferous rocks from the Barberton greenstone belt of South Africa and the East Pilbara terrane of Western Australia are a window onto primitive prokaryotic ecoystems. Complementary petrographic, morphological, (bio)geochemical and nanostructural analyses of chert horizons and the carbonaceous material within using a wide range of techniques – including optical microscopy, SEM-EDS, Raman spectroscopy, PIXE, µCT, laser ablation ICP-MS, high-resolution TEM-based analytical techniques and secondary ion mass spectrometry – can characterise, at scales from macroscopic to nanoscopic, the fossilised biomes of the earliest Earth. These approaches enable the definition of the palaeoenvironments, and potentially metabolic networks, preserved in ancient rocks. Modifying these protocols is necessary for Martian exploration using rovers, since the range and power of space instrumentation is significantly reduced relative to terrestrial laboratories. Understanding the crucial observations possible using highly complementary rover-based payloads is therefore critical in scientific protocols aiming to detect traces of life on Mars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microplastics (MP) are omnipresent contaminants in the marine environment. Ingestion of MP has been reported for a wide range of marine biota, but to what extent the uptake by organisms affects the dynamics and fate of MP in the marine system has received little attention. My thesis explored this topic by integrating laboratory tests and experiments, field quantitative surveys of MP distribution and dynamics, and the use of specialised analytical techniques such as Attenuated-Total-Reflectance- (ATR) and imaging- Fourier Transformed Infrared Spectroscopy (FTIR). I compared different methodologies to extract MP from wild invertebrate specimens, and selected the use of potassium hydroxide (KOH) as the most cost-effective approach. I used this approach to analyse the MP contamination in various invertebrate species with different ecological traits from European salt marshes. I found that 96% of the analysed specimens (330) did not contain any MP. As preliminary environmental analyses showed high levels of environmental MP contamination, I hypothesised that most MP do not accumulate into organisms but are rather fast egested. I subsequently used laboratory multi-trophic experiments and a long-term field experiment using the filter-feeding mussel Mytilus galloprovincialis and the detritus feeding polychaete Hediste diversicolor to test the aforementioned hypothesis. Overall, results showed that MP are ingested but rapidly egested by marine invertebrates, which may limit MP transfer via predator-prey interactions but at the same time enhance their transfer via detrital pathways in the sediments. These processes seem to be extremely variable over time, with potential unexplored environmental consequences. This rapid dynamics also limits the conclusions that can be derived from static observations of MP contents in marine organisms, not fully capturing the real levels of potential contaminations by marine species. This emphasises the need to consider such dynamics in future work to measure the uptake rates by organisms in natural systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La possibilità di monitorare la presenza di residui di farmaci veterinari e contaminanti biologici negli alimenti può trarre beneficio dall’uso di metodi di screening affidabili e di facile utilizzo. A tal fine, sono in fase di sviluppo molteplici applicazioni di biosensori in grado di coniugare sistemi di rilevamento biologico-specifici con trasduttori elettronici o ottici capaci di rilevare, amplificare, elaborare e misurare il segnale derivante dall’interazione tra un substrato costituito da enzimi, anticorpi o apteni e contaminanti ambientali o alimentari. Lo sviluppo di biosensori permette di rilevare la presenza di quantità residuali di un determinato analita in varie matrici sia animali che alimentari. Per questo Progetto di Ricerca sono state messe a punto tecniche di analisi elettrochimiche per rilevare quantitativamente la presenza di istamina e di batteri istaminogeni in campioni di pesce e determinare la presenza di ceppi di Escherichia coli nel latte crudo. Sono stati condotti anche degli studi riguardanti la presenza di residui di farmaci veterinari negli alimenti. Lo scopo di queste ricerche era quello di: • Sviluppare diversi tipi di sensori elettrochimici ed immunoenzimatici e valutare le loro potenzialità come metodi di analisi rapida. • Validare i risultati mediante comparazione con metodi analitici di riferimento. • Avviare uno studio per lo sviluppo di biosensori basato sulla valutazione del rischio

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Airborne Particulate Matter (PM), can get removed from the atmosphere through wet and dry mechanisms, and physically/chemically interact with materials and induce premature decay. The effect of dry depositions is a complex issue, especially for outdoor materials, because of the difficulties to collect atmospheric deposits repeatable in terms of mass and homogeneously distributed on the entire investigated substrate. In this work, to overcome these problems by eliminating the variability induced by outdoor removal mechanisms (e.g. winds and rainfalls), a new sampling system called ‘Deposition Box’, was used for PM sampling. Four surrogate materials (Cellulose Acetate, Regenerated Cellulose, Cellulose Nitrate and Aluminum) with different surfaces features were exposed in the urban-marine site of Rimini (Italy), in vertical and horizontal orientations. Homogeneous and reproducible PM deposits were obtained and different analytical techniques (IC, AAS, TOC, VP-SEM-EDX, Vis-Spectrophotometry) were employed to characterize their mass, dimension and composition. Results allowed to discriminate the mechanisms responsible of the dry deposition of atmospheric particles on surfaces with different nature and orientation and to determine which chemical species, and in which amount, tend to preferentially deposit on them. This work demonstrated that “Deposition Box” can represent an affordable tool to study dry deposition fluxes on materials and results obtained will be fundamental in order to extend this kind of exposure to actual building and heritage materials, to investigate the PM contribution in their decay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A relevant problem of polyolefins processing is the presence of volatile and semi-volatile compounds (VOCs and SVOCs) such as linear chains alkanes found out in final products. These VOCs can be detected by customers from the unpleasant smelt and can be an environmental issue, at the same time they can cause negative side effects during process. Since no previously standardized analytical techniques for polymeric matrix are available in bibliography, we have implemented different VOCs extraction methods and gaschromatographic analysis for quali-quantitative studies of such compounds. In literature different procedures can be found including microwave extraction (MAE) and thermo desorption (TDS) used with different purposes. TDS coupled with GC-MS are necessary for the identification of different compounds in the polymer matrix. Although the quantitative determination is complex, the results obtained from TDS/GC-MS show that by-products are mainly linear chains oligomers with even number of carbon in a C8-C22 range (for HDPE). In order to quantify these linear alkanes by-products, a more accurate GC-FID determination with internal standard has been run on MAE extracts. Regardless the type of extruder used, it is difficult to distinguish the effect of the various processes, which in any case entails having a lower-boiling substance content, lower than the corresponding virgin polymer. The two HDPEs studied can be distinguished on the basis of the quantity of analytes found, therefore the production process is mainly responsible for the amount of VOCs and SVOCs observed. The extruder technology used by Sacmi SC allows to obtain a significant reduction in VOCs compared to the conventional screw system. Thus, the result is significantly important as a lower quantity of volatile substances certainly leads to a lower migration of such materials, especially when used for food packaging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomarkers are biological indicators of human health conditions. Their ultra-sensitive quantification is of paramount importance in clinical monitoring and early disease diagnosis. Biosensors are simple and easy-to-use analytical devices and, in their world, electrochemiluminescence (ECL) is one of the most promising analytical techniques that needs an ever-increasing sensitivity for improving its clinical effectiveness. Scope of this project was the investigation of the ECL generation mechanisms for enhancing the ECL intensity also through the identification of suitable nanostructures. The combination of nanotechnologies, microscopy and ECL has proved to be a very successful strategy to improve the analytical efficiency of ECL in one of its most promising bioanalytical approaches, the bead-based immunoassay. Nanosystems, such as [Ru(bpy)3]2+-dye-doped nanoparticles (DDSNPs) and Bodipy Carbon Nanodots, have been used to improve the sensitivity of ECL techniques thanks to their advantageous and tuneable properties, reaching a signal increase of 750% in DDSNPs-bead-based immunoassay system. In this thesis, an investigation of size and distance effects on the ECL mechanisms was carried out through the innovative combination of ECL microscopy and electrochemical mapping of radicals. It allowed the discovery of an unexpected and highly efficient mechanistic path for ECL generation at small distances from the electrode surface. It was exploited and enhanced through the addition of a branched amine DPIBA to the usual coreactant TPrA solution for enhancing the ECL efficiency until a maximum of 128%. Finally, a beads-based immunoassay and an immunosensor specific for cardiac Troponin I were built exploiting previous results and carbon nanotubes features. They created a conductive layer around beads enhancing the signal by 70% and activating an ECL mechanism unobserved before in such systems. In conclusion, the combination of ECL microscopy and nanotechnology and the deep understanding of the mechanisms responsible for the ECL emission led to a great enhancement in the signal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cured meats and dairy products are criticized for their salt content and synthetic additives. This has led to the development of strategies to reduce and replace these ingredients. Since the food matrix and technological processes can affect the bioaccessibility of nutrients, it is necessary to study their release during digestion to determine the real nutritional value of foods. In the first part of this PhD project, the impact on the nutritional quality of the reduction of sodium content and of the replacement of synthetic nitrates/nitrites with a combination of innovative formulations was evaluated in Parmigiano Reggiano Cheese and salami. For this purpose, an in vitro digestion model combined with different analytical techniques was used. The results showed that fatty acids and proteins release increased over time during digestion. At the end of digestion, the innovative formulation/processing did not negatively affect fatty acids release and protein hydrolysis, and led to the formation of bioactive peptides. The excessive intake of sugars is correlated with metabolic diseases. After the intestinal uptake, their release in the blood stream depends on their metabolic fate within the enterocyte. In the second part of this PhD project, the absorption and metabolism of glucose, fructose and sucrose was evaluated using intestinal cell line. A faster absorption of fructose than glucose was observed, and a different modulation of the synthesis/transport of other metabolites by monosaccharides was shown. Intestinal cells were also used to verify the stability and intestinal uptake of vitamins (A and D3) delivered to cells through two vehicles. It was shown that the presence of lipids protected the vitamin from external factors such as light, heat and oxygen, and improved their bioavailability Overall, the results obtained in this PhD project confirmed that considering only the chemical composition of foods is not sufficient to determine their nutritional value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphite is a mineral commodity used as anode for lithium-ion batteries (LIBs), and its global demand is doomed to increase significantly in the future due to the forecasted global market demand of electric vehicles. Currently, the graphite used to produce LIBs is a mix of synthetic and natural graphite. The first one is produced by the crystallization of petroleum by-products and the second comes from mining, which causes threats related to pollution, social acceptance, and health. This MSc work has the objective of determining compositional and textural characteristics of natural, synthetic, and recycled graphite by using SEM-EDS, XRF, XRD, and TEM analytical techniques and couple these data with dynamic Material Flow Analysis (MFA) models, which have the objective of predicting the future global use of graphite in order to test the hypothesis that natural graphite will no longer be used in the LIB market globally. The mineral analyses reveal that the synthetic graphite samples contain less impurities than the natural graphite, which has a rolled internal structure similar to the recycled one. However, recycled graphite shows fractures and discontinuities of the graphene layers caused by the recycling process, but its rolled internal structure can help the Li-ions’ migration through the fractures. Three dynamic MFA studies have been conducted to test distinct scenarios that include graphite recycling in the period 2022-2050 and it emerges that - irrespective of any considered scenario - there will be an increase of synthetic graphite demand, caused by the limited stocks of battery scrap available. Hence, I conclude that both natural and recycled graphite is doomed to be used in the LIB market in the future, at least until the year 2050 when the stock of recycled graphite production will be enough to supersede natural graphite. In addition, some new improvement in the dismantling and recycling processes are necessary to improve the quality of recycled graphite.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cancer comprises a collection of diseases, all of which begin with abnormal tissue growth from various stimuli, including (but not limited to): heredity, genetic mutation, exposure to harmful substances, radiation as well as poor dieting and lack of exercise. The early detection of cancer is vital to providing life-saving, therapeutic intervention. However, current methods for detection (e.g., tissue biopsy, endoscopy and medical imaging) often suffer from low patient compliance and an elevated risk of complications in elderly patients. As such, many are looking to “liquid biopsies” for clues into presence and status of cancer due to its minimal invasiveness and ability to provide rich information about the native tumor. In such liquid biopsies, peripheral blood is drawn from patients and is screened for key biomarkers, chiefly circulating tumor cells (CTCs). Capturing, enumerating and analyzing the genetic and metabolomic characteristics of these CTCs may hold the key for guiding doctors to better understand the source of cancer at an earlier stage for more efficacious disease management.

The isolation of CTCs from whole blood, however, remains a significant challenge due to their (i) low abundance, (ii) lack of a universal surface marker and (iii) epithelial-mesenchymal transition that down-regulates common surface markers (e.g., EpCAM), reducing their likelihood of detection via positive selection assays. These factors potentiate the need for an improved cell isolation strategy that can collect CTCs via both positive and negative selection modalities as to avoid the reliance on a single marker, or set of markers, for more accurate enumeration and diagnosis.

The technologies proposed herein offer a unique set of strategies to focus, sort and template cells in three independent microfluidic modules. The first module exploits ultrasonic standing waves and a class of elastomeric particles for the rapid and discriminate sequestration of cells. This type of cell handling holds promise not only in sorting, but also in the isolation of soluble markers from biofluids. The second module contains components to focus (i.e., arrange) cells via forces from acoustic standing waves and separate cells in a high throughput fashion via free-flow magnetophoresis. The third module uses a printed array of micromagnets to capture magnetically labeled cells into well-defined compartments, enabling on-chip staining and single cell analysis. These technologies can operate in standalone formats, or can be adapted to operate with established analytical technologies, such as flow cytometry. A key advantage of these innovations is their ability to process erythrocyte-lysed blood in a rapid (and thus high throughput) fashion. They can process fluids at a variety of concentrations and flow rates, target cells with various immunophenotypes and sort cells via positive (and potentially negative) selection. These technologies are chip-based, fabricated using standard clean room equipment, towards a disposable clinical tool. With further optimization in design and performance, these technologies might aid in the early detection, and potentially treatment, of cancer and various other physical ailments.