925 resultados para Methods and systems of culture. Cropping systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have modeled various soft-matter systems with molecular dynamics (MD) simulations. The first topic concerns liquid crystal (LC) biaxial nematic (Nb) phases, that can be possibly used in fast displays. We have investigated the phase organization of biaxial Gay-Berne (GB) mesogens, considering the effects of the orientation, strength and position of a molecular dipole. We have observed that for systems with a central dipole, nematic biaxial phases disappear when increasing dipole strength, while for systems characterized by an offset dipole, the Nb phase is stabilized at very low temperatures. In a second project, in view of their increasing importance as nanomaterials in LC phases, we are developing a DNA coarse-grained (CG) model, in which sugar and phosphate groups are represented with Lennard-Jones spheres, while bases with GB ellipsoids. We have obtained shape, position and orientation parameters for each bead, to best reproduce the atomistic structure of a B-DNA helix. Starting from atomistic simulations results, we have completed a first parametrization of the force field terms, accounting for bonded (bonds, angles and dihedrals) and non-bonded interactions (H-bond and stacking). We are currently validating the model, by investigating stability and melting temperature of various sequences. Finally, in a third project, we aim to explain the mechanism of enantiomeric discrimination due to the presence of a chiral helix of poly(gamma-benzyl L-glutamate) (PBLG), in solution of dimethylformamide (DMF), interacting with chiral or pro-chiral molecules (in our case heptyl butyrate, HEP), after tuning properly an atomistic force field (AMBER). We have observed that DMF and HEP molecules solvate uniformly the PBLG helix, but the pro-chiral solute is on average found closer to the helix with respect to the DMF. The solvent presents a faster isotropic diffusion, twice as HEP, also indicating a stronger interaction of the solute with the helix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the use of Reverse Engineering systems has got a considerable interest for a wide number of applications. Therefore, many research activities are focused on accuracy and precision of the acquired data and post processing phase improvements. In this context, this PhD Thesis deals with the definition of two novel methods for data post processing and data fusion between physical and geometrical information. In particular a technique has been defined for error definition in 3D points’ coordinates acquired by an optical triangulation laser scanner, with the aim to identify adequate correction arrays to apply under different acquisition parameters and operative conditions. Systematic error in data acquired is thus compensated, in order to increase accuracy value. Moreover, the definition of a 3D thermogram is examined. Object geometrical information and its thermal properties, coming from a thermographic inspection, are combined in order to have a temperature value for each recognizable point. Data acquired by an optical triangulation laser scanner are also used to normalize temperature values and make thermal data independent from thermal-camera point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presented thesis revolves around the study of thermally-responsive PNIPAAm-based hydrogels in water/based environments, as studied by Fluorescence Correlation Spectroscopy (FCS).rnThe goal of the project was the engineering of PNIPAAm gels into biosensors. Specifically, a gamma of such gels were both investigated concerning their dynamics and structure at the nanometer scale, and their performance in retaining bound bodies upon thermal collapse (which PNIPAAm undergoes upon heating above 32 ºC).rnFCS’s requirements, as a technique, match the limitations imposed by the system. Namely, the need to intimately probe a system in a solvent, which was also fragile and easy to alter. FCS, on the other hand, both requires a fluid environment to work, and is based on the observation of diffusion of fluorescents at nanomolar concentrations. FCS was applied to probe the hydrogels on the nanometer size with minimal invasivity.rnVariables in the gels were addressed in the project including crosslinking degree; structural changes during thermal collapse; behavior in different buffers; the possibility of decreasing the degree of inhomogeneity; behavior of differently sized probes; and the effectiveness of antibody functionalization upon thermal collapse.rnThe evidenced results included the heightening of structural inhomogeneities during thermal collapse and under different buffer conditions; the use of annealing to decrease the inhomogeneity degree; the use of differently sized probes to address different length scale of the gel; and the successful functionalization before and after collapse.rnThe thesis also addresses two side projects, also carried forward via FCS. One, diffusion in inverse opals, produced a predictive simulation model for diffusion of bodies in confined systems as dependent on the bodies’ size versus the characteristic sizes of the system. The other was the observation of interaction of bodies of opposite charge in a water solution, resulting in a phenomenological theory and an evaluation method for both the average residence time of the different bodies together, and their attachment likelihood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to investigate, using extensive Monte Carlo computer simulations, composite materials consisting of liquid crystals doped with nanoparticles. These systems are currently of great interest as they offer the possibility of tuning the properties of liquid crystals used in displays and other devices as well as providing a way of obtaining regularly organized systems of nanoparticles exploiting the molecular organization of the liquid crystal medium. Surprisingly enough, there is however a lack of fundamental knowledge on the properties and phase behavior of these hybrid materials, making the route to their application an essentially empirical one. Here we wish to contribute to the much needed rationalization of these systems studying some basic effects induced by different nanoparticles on a liquid crystal host. We investigate in particular the effects of nanoparticle shape, size and polarity as well as of their affinity to the liquid crystal solvent on the stability of the system, monitoring phase transitions, order and molecular organizations. To do this we have proposed a coarse grained approach where nanoparticles are modelled as a suitably shaped (spherical, rod and disk like) collection of spherical Lennard-Jones beads, while the mesogens are represented with Gay-Berne particles. We find that the addition of apolar nanoparticles of different shape typically lowers the nematic–isotropic transition of a non-polar nematic, with the destabilization being greater for spherical nanoparticles. For polar mesogens we have studied the effect of solvent affinity of the nanoparticles showing that aggregation takes places for low solvation values. Interestingly, if the nanoparticles are polar the aggregates contribute to stabilizing the system, compensating the shape effect. We thus find the overall effects on stability to be a delicate balance of often contrasting contributions pointing to the relevance of simulations studies for understanding these complex systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In den vergangenen Jahren wurden einige bislang unbekannte Phänomene experimentell beobachtet, wie etwa die Existenz unterschiedlicher Prä-Nukleations-Strukturen. Diese haben zu einem neuen Verständnis von Prozessen, die auf molekularer Ebene während der Nukleation und dem Wachstum von Kristallen auftreten, beigetragen. Die Auswirkungen solcher Prä-Nukleations-Strukturen auf den Prozess der Biomineralisation sind noch nicht hinreichend verstanden. Die Mechanismen, mittels derer biomolekulare Modifikatoren, wie Peptide, mit Prä-Nukleations-Strukturen interagieren und somit den Nukleationsprozess von Mineralen beeinflussen könnten, sind vielfältig. Molekulare Simulationen sind zur Analyse der Formation von Prä-Nukleations-Strukturen in Anwesenheit von Modifikatoren gut geeignet. Die vorliegende Arbeit beschreibt einen Ansatz zur Analyse der Interaktion von Peptiden mit den in Lösung befindlichen Bestandteilen der entstehenden Kristalle mit Hilfe von Molekular-Dynamik Simulationen.rnUm informative Simulationen zu ermöglichen, wurde in einem ersten Schritt die Qualität bestehender Kraftfelder im Hinblick auf die Beschreibung von mit Calciumionen interagierenden Oligoglutamaten in wässrigen Lösungen untersucht. Es zeigte sich, dass große Unstimmigkeiten zwischen etablierten Kraftfeldern bestehen, und dass keines der untersuchten Kraftfelder eine realistische Beschreibung der Ionen-Paarung dieser komplexen Ionen widerspiegelte. Daher wurde eine Strategie zur Optimierung bestehender biomolekularer Kraftfelder in dieser Hinsicht entwickelt. Relativ geringe Veränderungen der auf die Ionen–Peptid van-der-Waals-Wechselwirkungen bezogenen Parameter reichten aus, um ein verlässliches Modell für das untersuchte System zu erzielen. rnDas umfassende Sampling des Phasenraumes der Systeme stellt aufgrund der zahlreichen Freiheitsgrade und der starken Interaktionen zwischen Calciumionen und Glutamat in Lösung eine besondere Herausforderung dar. Daher wurde die Methode der Biasing Potential Replica Exchange Molekular-Dynamik Simulationen im Hinblick auf das Sampling von Oligoglutamaten justiert und es erfolgte die Simulation von Peptiden verschiedener Kettenlängen in Anwesenheit von Calciumionen. Mit Hilfe der Sketch-Map Analyse konnten im Rahmen der Simulationen zahlreiche stabile Ionen-Peptid-Komplexe identifiziert werden, welche die Formation von Prä-Nukleations-Strukturen beeinflussen könnten. Abhängig von der Kettenlänge des Peptids weisen diese Komplexe charakteristische Abstände zwischen den Calciumionen auf. Diese ähneln einigen Abständen zwischen den Calciumionen in jenen Phasen von Calcium-Oxalat Kristallen, die in Anwesenheit von Oligoglutamaten gewachsen sind. Die Analogie der Abstände zwischen Calciumionen in gelösten Ionen-Peptid-Komplexen und in Calcium-Oxalat Kristallen könnte auf die Bedeutung von Ionen-Peptid-Komplexen im Prozess der Nukleation und des Wachstums von Biomineralen hindeuten und stellt einen möglichen Erklärungsansatz für die Fähigkeit von Oligoglutamaten zur Beeinflussung der Phase des sich formierenden Kristalls dar, die experimentell beobachtet wurde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the origins of the mechanical properties and its correlation withrnthe microstructure of gel systems is of great scientific and industrial interest. Inrngeneral, colloidal gels can be classified into chemical and physical gels, accordingrnto the life time of the network bonds. The characteristic di↵erences in gelationrndynamics can be observed with rheological measurements.rnAs a model system, a mixture of sodium silicate and low concentration sulfuric acidrnwas used. Nano-sized silica particles grow and aggregate to a system-spanning gelrnnetwork. The influence of the finite solubility of silica at high pH on the gelationrnwas studied with classical and piezo rheometer. The storage modulus of therngel grew logarithmically with time with two distinct growth laws. A relaxationrnat low frequency was observed in the frequency dependent measurements. I attributernthese two behaviors as a sign of structural rearrangements due to the finiternsolubility of silica at high pH. The reaction equilibrium between formation andrndissolution of bonds leads to a finite life time of the bonds and behavior similar tornphysical gel. The frequency dependence was more pronounced for lower water concentrations,rnhigher temperatures and shorter reaction times. With two relaxationrnmodels, I deduced characteristic relaxation times from the experimental data. Besidesrnrheology, the evolution of silica gels at high pH on di↵erent length scales wasrnstudied by NMR and dynamic light scattering. The results revealed that the primaryrnparticles existed already in sodium silicate and aggregated after the mixingrnof reactants due to a chemical reaction. Throughout the aggregation process thernsystem was in its chemical reaction equilibrium. Applying large oscillatory shearrnstrain to the gel allowed for modifying the gel modulus. The e↵ect of shear andrnshear history on the rheological properties of the gel were investigated. The storagernmodulus of the final gel increased with increasing strain. This behavior can be explained with (i) shear-induced aggregate compaction and (ii) combination ofrnbreakage and new formation of bonds.rnIn comparison with the physical gel-like behavior of the silica gel at high pH, typicalrnchemical gel features were exhibited by other gels formed from various chemicalrnreactions. Influences of the chemical structure modification on the gelation wererninvestigated with the piezo-rheometer. The external stimuli can be applied to tunernthe mechanical properties of the gel systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel single step synthetic procedure for hydrophobically modified alkali soluble latexes (HASE) via a miniemulsion-analogous method is presented. This facile method simplifies the copolymerization of the monomers with basically “opposite” character in terms of their hydrophilic/hydrophobic nature, which represent one of the main challenges in water based systems. Considered systems do not represent classical miniemulsions due to a high content of water soluble monomers. However, the polymerization mechanism was found to be rather similar to miniemulsion polymerization process.rnThe influence of the different factors on the system stability has been investigated. The copolymerization behavior studies typically showed strong composition drifts during copolymerization. It was found that the copolymer composition drift can be suppressed via changing the initial monomer ratio.rnThe neutralization behavior of the obtained HASE systems was investigated via potentiometric titration. The rheological behavior of the obtained systems as a function of the different parameters, such as pH, composition (ultrahydrophobe content) and additive type and content has also been investigated.rnDetailed investigation of the storage and loss moduli, damping factor and the crossover frequencies of the samples showed that at the initial stages of the neutralization the systems show microgel-like behavior.rnThe dependence of the rheological properties on the content and the type of the ultrahydrophobe showed that the tuning of the mechanical properties can be easily achieved via minor (few percent) but significant changes in the content of the latter. Besides, changing the hydrophobicity of the ultrahydrophobe via increasing the carbon chain length represents another simple method for achieving the same results.rnThe influence of amphiphilic additives (especially alcohols) on the rheological behavior of the obtained systems has been studied. An analogy was made between micellation of surfactants and the formation of hydrophobic domains between hydrophobic groups of the polymer side chain.rnDilution induced viscosity reduction was investigated in different systems, without or with different amounts or types of the amphiphilic additive. Possibility of the controlled response to dilution was explored. It was concluded that the sensitivity towards dilution can be reduced, and in extreme cases even the increase of the dynamic modulus can be observed, which is of high importance for the setting behavior of the adhesive material.rnIn the last part of this work, the adhesive behavior of the obtained HASE systems was investigated on different substrates (polypropylene and glass) for the standard labeling paper. Wet tack and setting behavior was studied and the trends for possible applications have been evaluated.rnThe novel synthetic procedure, investigation of rheological properties and the possibility of the tuning via additives, investigated in this work create a firm background for the development of the HASE based adhesives as well as rheology modifiers with vast variety of possible applications due to ease of tuning the mechanical and rheological properties of the systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inter-American human rights system has been conceived following the example of the European system under the European Convention on Human Rights (ECHR) before it was modified by Protocol No 11. However, two important differences exist. First, the authority of the European Court of Human Rights (ECtHR) to order reparation has been strictly limited by the principle of subsidiarity. Thus, the ECtHR's main function is to determine whether the ECHR has been violated. Beyond the declaratory effect of its judgments, according to Article 41 ECHR, it may only "afford just satisfaction to the injured party". The powers of the Inter-American Court of Human Rights (IACtHR) were conceived in a much broader fashion in Article 63 of the American Convention on Human Rights (ACHR), giving the Court the authority to order a variety of individual and general measures aimed at obtaining restitutio in integrum. The first main part of this thesis shows how both Courts have developed their reparation practice and examines the advantages and disadvantages of each approach. Secondly, the ECtHR's rather limited reparation powers have, interestingly, been combined with an elaborate implementation system that includes several of the Council of Europe's organs, principally the Committee of Ministers. In the Inter-American System, no dedicated mechanism was implemented to oversee compliance with the IACtHR's judgments. The ACHR limits itself to inviting the Court to point out in its annual reports the cases that have not been complied with and to propose measures to be adopted by the General Assembly of the Organization of American States. The General Assembly, however, hardly ever took action. The IACtHR has therefore filled this gap by developing a proper procedure to oversee compliance with its judgments. Both the European and the American solutions to ensure compliance are presented and compared in the second main part of this thesis. Finally, based on the results of both main parts, a comparative analysis of the reparation practice and the execution results in both human rights systems is being provided, aimed at developing proposals for the improvement of the functioning of either human rights protection system.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Book review of: Kendall, Ann Rodríguez, Abelardo. Desarrollo y Perspectivas de los Sistemas de Andenerías en los Andes Centrales del Perú (Development and Perspectives of Irrigated Terrace Systems in the Peruvian Central Andes). Cuzco, Peru. ISBN: 978-9972-691-93-5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of a high-density neural recording system targeting epilepsy monitoring is presented. Circuit challenges and techniques are discussed to optimize the amplifier topology and the included OTA. A new platform supporting active recording devices targeting wireless and high-resolution focus localization in epilepsy diagnosis is also proposed. The post-layout simulation results of an amplifier dedicated to this application are presented. The amplifier is designed in a UMC 0.18µm CMOS technology, has an NEF of 2.19 and occupies a silicon area of 0.038 mm(2), while consuming 5.8 µW from a 1.8-V supply.