940 resultados para Methods: Data Analysis
Resumo:
Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.
Resumo:
New methods of analysis of patent statistics allow assessing country profiles of technological specialization for the period 1990-2006. We witness a modest decrease in levels of specialization, which we show to be negatively influenced by country size and degree of internationalization of inventive activities.
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observedfor each individual. A particular case of FDA is when the observed functions are densityfunctions, that are also an example of infinite dimensional compositional data. In thiswork we compare several methods for dimensionality reduction for this particular typeof data: functional principal components analysis (PCA) with or without a previousdata transformation and multidimensional scaling (MDS) for diferent inter-densitiesdistances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (householdsincome distributions)
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.
Resumo:
We consider two fundamental properties in the analysis of two-way tables of positive data: the principle of distributional equivalence, one of the cornerstones of correspondence analysis of contingency tables, and the principle of subcompositional coherence, which forms the basis of compositional data analysis. For an analysis to be subcompositionally coherent, it suffices to analyse the ratios of the data values. The usual approach to dimension reduction in compositional data analysis is to perform principal component analysis on the logarithms of ratios, but this method does not obey the principle of distributional equivalence. We show that by introducing weights for the rows and columns, the method achieves this desirable property. This weighted log-ratio analysis is theoretically equivalent to spectral mapping , a multivariate method developed almost 30 years ago for displaying ratio-scale data from biological activity spectra. The close relationship between spectral mapping and correspondence analysis is also explained, as well as their connection with association modelling. The weighted log-ratio methodology is applied here to frequency data in linguistics and to chemical compositional data in archaeology.
Resumo:
Dual scaling of a subjects-by-objects table of dominance data (preferences,paired comparisons and successive categories data) has been contrasted with correspondence analysis, as if the two techniques were somehow different. In this note we show that dual scaling of dominance data is equivalent to the correspondence analysis of a table which is doubled with respect to subjects. We also show that the results of both methods can be recovered from a principal components analysis of the undoubled dominance table which is centred with respect to subject means.
Resumo:
The proportion of population living in or around cites is more important than ever. Urban sprawl and car dependence have taken over the pedestrian-friendly compact city. Environmental problems like air pollution, land waste or noise, and health problems are the result of this still continuing process. The urban planners have to find solutions to these complex problems, and at the same time insure the economic performance of the city and its surroundings. At the same time, an increasing quantity of socio-economic and environmental data is acquired. In order to get a better understanding of the processes and phenomena taking place in the complex urban environment, these data should be analysed. Numerous methods for modelling and simulating such a system exist and are still under development and can be exploited by the urban geographers for improving our understanding of the urban metabolism. Modern and innovative visualisation techniques help in communicating the results of such models and simulations. This thesis covers several methods for analysis, modelling, simulation and visualisation of problems related to urban geography. The analysis of high dimensional socio-economic data using artificial neural network techniques, especially self-organising maps, is showed using two examples at different scales. The problem of spatiotemporal modelling and data representation is treated and some possible solutions are shown. The simulation of urban dynamics and more specifically the traffic due to commuting to work is illustrated using multi-agent micro-simulation techniques. A section on visualisation methods presents cartograms for transforming the geographic space into a feature space, and the distance circle map, a centre-based map representation particularly useful for urban agglomerations. Some issues on the importance of scale in urban analysis and clustering of urban phenomena are exposed. A new approach on how to define urban areas at different scales is developed, and the link with percolation theory established. Fractal statistics, especially the lacunarity measure, and scale laws are used for characterising urban clusters. In a last section, the population evolution is modelled using a model close to the well-established gravity model. The work covers quite a wide range of methods useful in urban geography. Methods should still be developed further and at the same time find their way into the daily work and decision process of urban planners. La part de personnes vivant dans une région urbaine est plus élevé que jamais et continue à croître. L'étalement urbain et la dépendance automobile ont supplanté la ville compacte adaptée aux piétons. La pollution de l'air, le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la société, des solutions à ces problèmes complexes. En même temps, il faut assurer la performance économique de la ville et de sa région. Actuellement, une quantité grandissante de données socio-économiques et environnementales est récoltée. Pour mieux comprendre les processus et phénomènes du système complexe "ville", ces données doivent être traitées et analysées. Des nombreuses méthodes pour modéliser et simuler un tel système existent et sont continuellement en développement. Elles peuvent être exploitées par le géographe urbain pour améliorer sa connaissance du métabolisme urbain. Des techniques modernes et innovatrices de visualisation aident dans la communication des résultats de tels modèles et simulations. Cette thèse décrit plusieurs méthodes permettant d'analyser, de modéliser, de simuler et de visualiser des phénomènes urbains. L'analyse de données socio-économiques à très haute dimension à l'aide de réseaux de neurones artificiels, notamment des cartes auto-organisatrices, est montré à travers deux exemples aux échelles différentes. Le problème de modélisation spatio-temporelle et de représentation des données est discuté et quelques ébauches de solutions esquissées. La simulation de la dynamique urbaine, et plus spécifiquement du trafic automobile engendré par les pendulaires est illustrée à l'aide d'une simulation multi-agents. Une section sur les méthodes de visualisation montre des cartes en anamorphoses permettant de transformer l'espace géographique en espace fonctionnel. Un autre type de carte, les cartes circulaires, est présenté. Ce type de carte est particulièrement utile pour les agglomérations urbaines. Quelques questions liées à l'importance de l'échelle dans l'analyse urbaine sont également discutées. Une nouvelle approche pour définir des clusters urbains à des échelles différentes est développée, et le lien avec la théorie de la percolation est établi. Des statistiques fractales, notamment la lacunarité, sont utilisées pour caractériser ces clusters urbains. L'évolution de la population est modélisée à l'aide d'un modèle proche du modèle gravitaire bien connu. Le travail couvre une large panoplie de méthodes utiles en géographie urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces méthodes et en même temps, elles doivent trouver leur chemin dans la vie quotidienne des urbanistes et planificateurs.
Resumo:
The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.
Resumo:
Recent years have produced great advances in the instrumentation technology. The amount of available data has been increasing due to the simplicity, speed and accuracy of current spectroscopic instruments. Most of these data are, however, meaningless without a proper analysis. This has been one of the reasons for the overgrowing success of multivariate handling of such data. Industrial data is commonly not designed data; in other words, there is no exact experimental design, but rather the data have been collected as a routine procedure during an industrial process. This makes certain demands on the multivariate modeling, as the selection of samples and variables can have an enormous effect. Common approaches in the modeling of industrial data are PCA (principal component analysis) and PLS (projection to latent structures or partial least squares) but there are also other methods that should be considered. The more advanced methods include multi block modeling and nonlinear modeling. In this thesis it is shown that the results of data analysis vary according to the modeling approach used, thus making the selection of the modeling approach dependent on the purpose of the model. If the model is intended to provide accurate predictions, the approach should be different than in the case where the purpose of modeling is mostly to obtain information about the variables and the process. For industrial applicability it is essential that the methods are robust and sufficiently simple to apply. In this way the methods and the results can be compared and an approach selected that is suitable for the intended purpose. Differences in data analysis methods are compared with data from different fields of industry in this thesis. In the first two papers, the multi block method is considered for data originating from the oil and fertilizer industries. The results are compared to those from PLS and priority PLS. The third paper considers applicability of multivariate models to process control for a reactive crystallization process. In the fourth paper, nonlinear modeling is examined with a data set from the oil industry. The response has a nonlinear relation to the descriptor matrix, and the results are compared between linear modeling, polynomial PLS and nonlinear modeling using nonlinear score vectors.
Resumo:
Results of subgroup analysis (SA) reported in randomized clinical trials (RCT) cannot be adequately interpreted without information about the methods used in the study design and the data analysis. Our aim was to show how often inaccurate or incomplete reports occur. First, we selected eight methodological aspects of SA on the basis of their importance to a reader in determining the confidence that should be placed in the author's conclusions regarding such analysis. Then, we reviewed the current practice of reporting these methodological aspects of SA in clinical trials in four leading journals, i.e., the New England Journal of Medicine, the Journal of the American Medical Association, the Lancet, and the American Journal of Public Health. Eight consecutive reports from each journal published after July 1, 1998 were included. Of the 32 trials surveyed, 17 (53%) had at least one SA. Overall, the proportion of RCT reporting a particular methodological aspect ranged from 23 to 94%. Information on whether the SA preceded/followed the analysis was reported in only 7 (41%) of the studies. Of the total possible number of items to be reported, NEJM, JAMA, Lancet and AJPH clearly mentioned 59, 67, 58 and 72%, respectively. We conclude that current reporting of SA in RCT is incomplete and inaccurate. The results of such SA may have harmful effects on treatment recommendations if accepted without judicious scrutiny. We recommend that editors improve the reporting of SA in RCT by giving authors a list of the important items to be reported.
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observed for each individual. A particular case of FDA is when the observed functions are density functions, that are also an example of infinite dimensional compositional data. In this work we compare several methods for dimensionality reduction for this particular type of data: functional principal components analysis (PCA) with or without a previous data transformation and multidimensional scaling (MDS) for diferent inter-densities distances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (households income distributions)
Resumo:
In this paper a new parametric method to deal with discrepant experimental results is developed. The method is based on the fit of a probability density function to the data. This paper also compares the characteristics of different methods used to deduce recommended values and uncertainties from a discrepant set of experimental data. The methods are applied to the (137)Cs and (90)Sr published half-lives and special emphasis is given to the deduced confidence intervals. The obtained results are analyzed considering two fundamental properties expected from an experimental result: the probability content of confidence intervals and the statistical consistency between different recommended values. The recommended values and uncertainties for the (137)Cs and (90)Sr half-lives are 10,984 (24) days and 10,523 (70) days, respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Researchers analyzing spatiotemporal or panel data, which varies both in location and over time, often find that their data has holes or gaps. This thesis explores alternative methods for filling those gaps and also suggests a set of techniques for evaluating those gap-filling methods to determine which works best.