989 resultados para Methanol.
Resumo:
The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD, (CH3OH)-C-13, (CD3OH)-C-13, (CD3OD)-C-13, (CH3OH)-O-18, CH2DOH, CHD2OH and CH2DOD.
Resumo:
Here we describe a new route to synthesize ultrafine rare earth doped and undoped tin oxide particles for catalytic applications. The catalytic behavior observed in SnO2 samples suggests the control of the catalytic activity and the selectivity of the products by the segregation of a layer of a rare earth compound with the increase of the heat-treatment temperature. The ultrafine particles were characterized by means of BET, XPS, TEM, XRD and Rietveld refinement. It was demonstrated that the effects of the dopant on the methanol decomposition reaction and on the H-2 selectivity were correlated with the segregation of a rare earth layer on the tin oxide samples. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Spontaneous deposition and electrochemical deposition by potential perturbation programs were used to place cerium-containing species on platinum surfaces in acid solution. Cyclic voltammetric profiles of cerium-modified platinum surfaces obtained after potentiostatic or potentiodynamic procedures (applied in the true hydrogen evolution region) differ from those recorded after spontaneous methods. However, the catalytic effects are nearly the same on these cerium-modified platinum surfaces for methanol electrooxidation, i.e. lower onset potential values for the anodic reaction. Besides, a different electrocatalytic effect was observed at large positive potentials on methanol oxidation due to the cerium oxide capability of oxygen storage. This effect is observed on platinum modified by a drastic potentiostatic procedure (by applying -2.0 V) in cerium(IV) acid solution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Ritz computer program, developed for facilitating the assignment of molecular Fourier transform absorption spectra and described in a previous work, determines the energy level values involved in the assigned transitions by the Rydberg-Ritz combination principle. Combining the data obtained from the analyses of high-resolution infrared (IR) and far-infrared (FIR) spectra, it is possible to predict possible FIR laser emissions of molecules. In the present work we have applied this method to the common isotopomer methanol, 12CH3 16OH, and obtained 14 proposed assignments for previously unassigned FIR laser lines. We also predict 15 possible new FIR laser emissions. For the first time, an assignment involving a four-level laser system with collisional population transfer to a slightly higher energy level is reported. © 1998 Academic Press.
Resumo:
PtRu/C nanocatalysts were prepared by a microemulsion method using different values of water/surfactant molar ratio in order to get different particle sizes. Crystallite sizes and structural properties were determined by X-ray diffraction. Particle size and distribution were characterized by transmission electron microscopy and average composition was determined by energy dispersive X-ray analysis. Differential scanning calorimetry measurements indicated the presence of oxides in the as-prepared catalysts. The general electrochemical behavior was evaluated by cyclic voltammetry in 0.5 M sulfuric acid and the electrocatalytic activity towards the oxidation of methanol was studied in 0.5 M methanol acid solutions by potential sweeps and chronoamperometry. copyright The Electrochemical Society.
Resumo:
The Pt-Ru/C materials of this study were prepared by a microemulsion method with fixed water to surfactant molar ratio and heat treated at low temperatures, to avoid changes in the average particle size, in different atmospheres. All samples were characterized by X-ray diffraction (XRD) and the mean crystallite size was estimated by using Scherrer's equation. Catalysts morphology was characterized by transmission electron microscopy (TEM). Average composition was obtained by energydispersive X-ray analysis (EDX). The general electrochemical behavior was evaluated by cyclic voltammetry in 0.5 M sulfuric acid and the electrocatalytic activity towards the oxidation of methanol was studied in 0.5 M methanol acid solutions by potential sweeps and chronoamperometry. Oxidation of adsorbed CO was used to estimate the electrochemical active area and to infer the surface properties. ©The Electrochemical Society.
Resumo:
A HPLC-ESI-IT-MSn method, based on high-performance liquid chromatography coupled to electrospray negative ionization multistage ion trap mass spectrometry, was developed for rapid identification of 24 flavonoid and naphthopyranone compounds. The methanol extracts of the capitulae and scapes of P. chiquitensis exhibited mutagenic activity in the Salmonella/microsome assay, against strain TA97a. © 2013 by the authors.
Resumo:
Os óleos essenciais da planta sub-aquática Conobea scoparioides (fresca e previamente seca) apresentaram rendimentos de 3,4 e 3,3%, respectivamente. Os principais constituintes identificados foram o éter metílico do timol (39,6 e 47,7%), timol (40,0 e 26,4%), α-felandreno (12,1 e 14,3%) e p-cimeno (1,5 e 1,7%), totalizando mais de 90% nos referidos óleos. A concentração de seqüestro do radical DPPH (CE50) dos óleos e extrato foi de 46,7 ± 3,6 µg mL-1 para a planta fresca (CsO-f), de 56,1 ± 2,4 µg mL-1 para a planta seca (CsO-d), e de 23,0 ± 2,2 µg mL-1 para o extrato metanólico (CsE-d). O valor do extrato é comparável ao BHT (19,8 ± 0,5 µg mL-1), usado como padrão antioxidante. O valor médio dos óleos é duas vezes menor, mas igualmente importante como agente antioxidante. O teor de Fenólicos Totais (TP, 124,6 ± 8,7 mg GAE per g) e o Trolox Equivalente (TEAC, 144,1 ± 4,9 mg TE per g) do extrato metanólico confirmaram a significativa atividade antioxidante de C. scoparioides. Da mesma forma, nos bioensaios com larva de camarão (Artemia salina) o valor médio da concentração letal dos óleos (CL50, 7,7 ± 0,3 µg mL-1) foi dez vezes maior que no extrato metanólico (CL50, 77,6 ± 7,1 µg mL-1) mostrando importante atividade biológica.
Resumo:
O óleo essencial das folhas e ramos finos frescos e secos de Hyptis crenata forneceu os seguintes rendimentos, 1,4% e 0,9%. Os constituintes voláteis principais foram α-pineno (22,0%; 19,5%), 1,8-cineol (17,6%; 23,2%), β-pineno (17,0%: 13,8%), cânfora (4,7%; 11,6%), limoneno (5,4%; 4,4%) e γ-terpineno (3,5%; 2,4%), totalizando mais de 70% nos óleos. A atividade de seqüestro do radical DPPH para o extrato metanólico (CE50, 16,7 + 0,4 µg/mL) foi comparável ao do BHT (19,8 ± 0,5 µg/mL) mostrando uma significante atividade antioxidante. Os óleos apresentaram baixa atividade. O teor de fenólicos totais (TP, 373,0 + 15,9 mg GAE/g) e equivalente trolox (TEAC, 226,8 + 0,5 mg TE/g) confirmaram a atividade antioxidante do extrato metanólico, que pode ser atribuída à presença de compostos fenólicos polares. No teste com larvas de camarão as concentrações letais para o óleo e extrato metanólico foram 6,7 + 0,2 µg/mL e 13,0 + 3,7 µg/mL, respectivamente, fornecendo importante evidência de suas atividade biológicas.
Resumo:
ABSTRACT: Mikania lindleyana DC., Asteraceae (sucuriju), grows in the Amazon region, where is frequently used to treat pain, inflammatory diseases and scarring. This study was carried out to investigate phytochemical profile accompanied by in vivo antinociceptive and anti-inflammatory screening of n-hexane (HE), dichloromethane (DME) and methanol (ME) extracts obtained from the aerial parts of the plant. The oral administration of ME (0.1, 0.3, 1 g/kg) caused a dose-related reduction (16.2, 42.1 e 70.2%) of acetic acid-induced abdominal writhing while HE and DME (1 g/kg, p.o.) were ineffective. In the hot plate test, ME (300 mg/kg, p.o.) increased the latency of heat stimulus between 30 and 120 min and inhibited the first (45%) and second (60%) phases of nociception in the formalin test. The antinociception induced by ME or positive control fentanyl (150 µg/kg, s.c.) in hot plate and formalin tests was prevented by naloxone (3 mg/kg, s.c.). When submitted to the carrageenan-induced peritonitis test, ME (0.5, 1.0, 2.0 g/kg, p.o.) impaired leukocyte migration into the peritoneal cavity by 46.8, 59.4 and 64.8% respectively, while positive control dexamethasone (2 mg/kg, s.c.), inhibited leukocyte migration by 71.1%. These results indicate that the antinociception obtained after oral administration of methanol extract of M. lindleyana involves anti-inflammatory mechanisms accompanied with opioid-like activity which could explain the use of the specie for pain and inflammatory diseases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rayleigh optical activities of small hydrogen-bonded methanol clusters containing two to five molecules are reported. For the methanol trimer, tetramer, and pentamer both cyclic and linear structures are considered. After the geometry optimizations, the dipole moments and the dipole polarizabilities (mean, interaction, and anisotropic components) are calculated using HF, MP2 and DFT (B3LYP, B3P86 and BH&HLYP) with aug-cc-pVDZ extended basis set. The polarizabilities are used to analyse the depolarization ratios and the Rayleigh scattering activities. The variations in the activity and in the depolarization for Rayleigh scattered radiation with the increase in the cluster size for both cyclic and linear structures are analysed.
Resumo:
As in the case of most small organic molecules, the electro-oxidation of methanol to CO2 is believed to proceed through a so-called dual pathway mechanism. The direct pathway proceeds via reactive intermediates such as formaldehyde or formic acid, whereas the indirect pathway occurs in parallel, and proceeds via the formation of adsorbed carbon monoxide (COad). Despite the extensive literature on the electro-oxidation of methanol, no study to date distinguished the production of CO2 from direct and indirect pathways. Working under, far-from-equilibrium, oscillatory conditions, we were able to decouple, for the first time, the direct and indirect pathways that lead to CO2 during the oscillatory electro-oxidation of methanol on platinum. The CO2 production was followed by differential electrochemical mass spectrometry and the individual contributions of parallel pathways were identified by a combination of experiments and numerical simulations. We believe that our report opens some perspectives, particularly as a methodology to be used to identify the role played by surface modifiers in the relative weight of both pathways-a key issue to the effective development of catalysts for low temperature fuel cells.
Resumo:
One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.