947 resultados para Methane Adsorption
Resumo:
Near ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) is used to study the chemical state of methane oxidation catalysts in-situ. Al2O3{supported Pd catalysts are prepared with different particle sizes ranging from 4 nm to 10 nm. These catalysts were exposed to conditions similar to those used in the partial oxidation of methane (POM) to syn-gas and simultaneously monitored by NAP-XPS and mass spectrometry. NAP-XPS data show changes in the oxidation state of the palladium as the temperature in- creases, from metallic Pd0 to PdO, and back to Pd0. Mass spectrometry shows an increase in CO production whilst the Pd is in the oxide phase, and the metal is reduced back under presence of newly formed H2. A particle size effect is observed, such that CH4 conversion starts at lower temperatures with larger sized particles from 6 nm to 10 nm. We find that all nanoparticles begin CH4 conversion at lower temperatures than polycrystalline Pd foil.
Resumo:
We have performed systematic Monte Carlo studies on the influence of shifting the walls in slit-like systems constructed from folded graphene sheets on their adsorption properties. Specifically, we have analysed the effect on the mechanism of argon adsorption (T = 87 K) and on adsorption and separation of three binary gas mixtures: CO2/N2, CO2/CH4 and CH4/N2 (T = 298 K). The effects of the changes in interlayer distance were also determined. We show that folding of the walls significantly improves the adsorption and separation properties in comparison to ideal slit-like systems. Moreover, we demonstrate that mutual shift of sheets (for small interlayer distances) causes the appearance of small pores between opposite bulges. This causes an increase in vapour adsorption at low pressures. Due to overlapping of interactions with opposite walls causing an increase in adsorption energy, the mutual shift of sheets is also connected with the rise in efficiency of mixtures separation. The effects connected with sheet orientation vanish as the interlayer distance increases.
Resumo:
We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three datasets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier Transform Spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Lab at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and between 1.5 and 3 for PEARL-FTS, while ACE-FTS has considerably more information (roughly 1° of freedom per altitude level). We take partial columns between roughly 5 and 30 km for the ACE-FTS–PEARL-FTS comparison, and between 5 and 10 km for the other pairs. The DOFS for the partial columns are between 1.2 and 2 for PEARL-FTS collocated with ACE-FTS, between 0.1 and 0.5 for PEARL-FTS collocated with TANSO-FTS or for TANSO-FTS collocated with either other instrument, while ACE-FTS has much higher information content. For all pairs, the partial column differences are within ± 3 × 1022 molecules cm−2. Expressed as median ± median absolute deviation (expressed in absolute or relative terms), these differences are 0.11 ± 9.60 × 10^20 molecules cm−2 (0.012 ± 1.018 %) for TANSO-FTS–PEARL-FTS, −2.6 ± 2.6 × 10^21 molecules cm−2 (−1.6 ± 1.6 %) for ACE-FTS–PEARL-FTS, and 7.4 ± 6.0 × 10^20 molecules cm−2 (0.78 ± 0.64 %) for TANSO-FTS–ACE-FTS. The differences for ACE-FTS–PEARL-FTS and TANSO-FTS–PEARL-FTS partial columns decrease significantly as a function of PEARL partial columns, whereas the range of partial column values for TANSO-FTS–ACE-FTS collocations is too small to draw any conclusion on its dependence on ACE-FTS partial columns.
Resumo:
Ruminant production is a vital part of food industry but it raises environmental concerns, partly due to the associated methane outputs. Efficient methane mitigation and estimation of emissions from ruminants requires accurate prediction tools. Equations recommended by international organizations or scientific studies have been developed with animals fed conserved forages and concentrates and may be used with caution for grazing cattle. The aim of the current study was to develop prediction equations with animals fed fresh grass in order to be more suitable to pasture-based systems and for animals at lower feeding levels. A study with 25 nonpregnant nonlactating cows fed solely fresh-cut grass at maintenance energy level was performed over two consecutive grazing seasons. Grass of broad feeding quality, due to contrasting harvest dates, maturity, fertilisation and grass varieties, from eight swards was offered. Cows were offered the experimental diets for at least 2 weeks before housed in calorimetric chambers over 3 consecutive days with feed intake measurements and total urine and faeces collections performed daily. Methane emissions were measured over the last 2 days. Prediction models were developed from 100 3-day averaged records. Internal validation of these equations, and those recommended in literature, was performed. The existing in greenhouse gas inventories models under-estimated methane emissions from animals fed fresh-cut grass at maintenance while the new models, using the same predictors, improved prediction accuracy. Error in methane outputs prediction was decreased when grass nutrient, metabolisable energy and digestible organic matter concentrations were added as predictors to equations already containing dry matter or energy intakes, possibly because they explain feed digestibility and the type of energy-supplying nutrients more efficiently. Predictions based on readily available farm-level data, such as liveweight and grass nutrient concentrations were also generated and performed satisfactorily. New models may be recommended for predictions of methane emissions from grazing cattle at maintenance or low feeding levels.
Resumo:
In vitro fermentation techniques (IVFT) have been widely used to evaluate the nutritivevalue of feeds for ruminants and in the last decade to assess the effect of different nutritionalstrategies on methane (CH4) production. However, many technical factors may influencethe results obtained. The present review has been prepared by the ‘Global Network’ FACCE-JPI international research consortium to provide a critical evaluation of the main factorsthat need to be considered when designing, conducting and interpreting IVFT experimentsthat investigate nutritional strategies to mitigate CH4emission from ruminants. Given theincreasing and wide-scale use of IVFT, there is a need to critically review reports in the lit-erature and establish what criteria are essential to the establishment and implementationof in vitro techniques. Key aspects considered include: i) donor animal species and numberof animal used, ii) diet fed to donor animals, iii) collection and processing of rumen fluidas inoculum, iv) choice of substrate and incubation buffer, v) incubation procedures andCH4measurements, vi) headspace gas composition and vii) comparability of in vitro andin vivo measurements. Based on an evaluation of experimental evidence, a set of techni-cal recommendations are presented to harmonize IVFT for feed evaluation, assessment ofrumen function and CH4production.
Resumo:
An in vitro study was conducted to investigate the effects of condensed tannins (CT) structural properties, i.e. average polymer size (or mean degree of polymerization); percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane production (CH4) and fermentation characteristics. CT were extracted from eight plants in order to obtain different CT types: black currant leaves, goat willow leaves, goat willow twigs, pine bark, red currant leaves, sainfoin plants, weeping willow catkins and white clover flowers. They were analysed for CT content and CT composition by thiolytic degradation, followed by HPLC analysis. Grass silage was used as a control substrate. Condensed tannins were added to the substrate at a concentration of 40 g/kg, with or without polyethylene glycol (+ or −PEG 6000 treatment) to inactivate tannins, and then incubated for 72 h in mixed buffered rumen fluid from three different lactating dairy cows per run. Total cumulative gas production (GP) was measured by an automated gas production system. During the incubation, 12 gas samples (10 μl) were collected from each bottle headspace at 0, 2, 4, 6, 8, 12, 24, 30, 36, 48, 56 and 72 h of incubation and analyzed for CH4. A modified Michaelis–Menten model was fitted to the CH4 concentration patterns and model estimates were used to calculate total cumulative CH4 production (GPCH4). Total cumulative gas production and GPCH4 curves were fitted using biphasic and monophasic modified Michaelis-Menten models, respectively. Addition of PEG increased GP, GPCH4, and CH4 concentration compared to the −PEG treatment. All CT types reduced GPCH4 and CH4 concentration. All CT increased the half time of GP and GPCH4. Moreover, all CT decreased the maximum rate of fermentation for GPCH4 and rate of substrate degradation. The correlation between CT structure and GPCH4 and fermentation characteristics showed that the proportion of prodelphinidins within CT had the largest effect on fermentation characteristics, followed by average 27 polymer size and percentage of cis-flavan-3-ols.
Resumo:
Ruminant husbandry is a major source of anthropogenic greenhouse gases (GHG). Filling knowledge gaps and providing expert recommendation are important for defining future research priorities, improving methodologies and establishing science-based GHG mitigation solutions to government and non-governmental organisations, advisory/extension networks, and the ruminant livestock sector. The objectives of this review is to summarize published literature to provide a detailed assessment of the methodologies currently in use for measuring enteric methane (CH4) emission from individual animals under specific conditions, and give recommendations regarding their application. The methods described include respiration chambers and enclosures, sulphur hexafluoride tracer (SF6) technique, and techniques based on short-term measurements of gas concentrations in samples of exhaled air. This includes automated head chambers (e.g. the GreenFeed system), the use of carbon dioxide (CO2) as a marker, and (handheld) laser CH4 detection. Each of the techniques are compared and assessed on their capability and limitations, followed by methodology recommendations. It is concluded that there is no ‘one size fits all’ method for measuring CH4 emission by individual animals. Ultimately, the decision as to which method to use should be based on the experimental objectives and resources available. However, the need for high throughput methodology e.g. for screening large numbers of animals for genomic studies, does not justify the use of methods that are inaccurate. All CH4 measurement techniques are subject to experimental variation and random errors. Many sources of variation must be considered when measuring CH4 concentration in exhaled air samples without a quantitative or at least regular collection rate, or use of a marker to indicate (or adjust) for the proportion of exhaled CH4 sampled. Consideration of the number and timing of measurements relative to diurnal patterns of CH4 emission and respiratory exchange are important, as well as consideration of feeding patterns and associated patterns of rumen fermentation rate and other aspects of animal behaviour. Regardless of the method chosen, appropriate calibrations and recovery tests are required for both method establishment and routine operation. Successful and correct use of methods requires careful attention to detail, rigour, and routine self-assessment of the quality of the data they provide.
Resumo:
Adsorption isotherms for the removal of linoleic acid from aqueous ethanol were measured using a strong anion exchange resin (Amberlyst A26 OH). The data for linoleic acid were compared with previously published results for oleic acid. The equilibrium data were correlated using the Langmuir and Freundlich isotherms. Lower average deviations between experimental and calculated results were obtained with the Langmuir model. The capacity of the resin for adsorbing linoleic acid was evaluated at different water contents in ethanol, 100 w = 0.50 to 15.27, and at 298.15 K. The water content in ethanol does not influence significantly the equilibrium behavior, and the strong anion exchange resin has a good performance in the removal of linoleic acid from the liquid phase.
Resumo:
Ordered mesoporous silica with cubic structure, type FDU-1, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butilene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)) and tetraethyl orthosilicate (TEOS). Humic acid (HA) was modified to the synthesis process at a concentration of 1.5 mmol per gram of SiO(2). Thermogravimetry, small angle X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscopy were used to characterize the samples. The pristine FDU-1 and FDU-1 with incorporated 1.5 mmol of HA were tested for adsorption of Pb(2+), Cu(2+) and Cd(2+) in aqueous solution. Incorporation of humic acid into the FDU-1 silica afforded an adsorbent with strong affinity for Cd(2+), Cu(2+) and Pb(2+) from single ion solutions. Adsorption of Cu(2+) was significantly enhanced after incorporation of humic acid, a fact that can be explained by the formation of complexes with carboxylic and phenolic groups at low concentrations of the metal cation. The results demonstrated the potential applicability of FDU-1 with incorporated HA in the removal of low concentrations of heavy metal cations from aqueous solution, such as wastewaters, after usual precipitation of metal hydroxides in alkaline medium and proper pH conditioning in the range between 6 and 7. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Electronic properties of a methane-water solution were investigated by a sequential quantum mechanical/molecular dynamics approach. Upon hydration methane acquires an induced dipole moment of similar to 0.5 +/- 0.2 D. This is related to polarisation effects and to weak methane-water hydrogen bond interactions. From gas phase to solution, the first vertical excitation and ionisation energies of methane are red-shifted by 0.45 +/- 0.25 and 0.87 +/- 0.40 eV, respectively. We also report results for the dynamic polarisability of methane in water. In comparison with water, no difference was found for the average monomeric dipole moment of water molecules in close interaction with methane. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
(i) The electronic and structural properties of boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by ab initio total energy calculations. In (i) we find that the structural deformations are very localized around the boron substitutional sites, and in accordance with previous studies (Endo et al 2001 J. Appl. Phys. 90 5670) there is an increase of the electronic density of states near the Fermi level. Our simulated scanning tunneling microscope (STM) images, for occupied states, indicate the formation of bright (triangular) spots lying on the substitutional boron (center) and nearest-neighbor carbon (edge) sites. Those STM images are attributed to the increase of the density of states within an energy interval of 0.5 eV below the Fermi level. For a boron concentration of similar to 2.4%, we find that two boron atoms lying on the opposite sites of the same hexagonal ring (B1-B2 configuration) represents the energetically most stable configuration, which is in contrast with previous theoretical findings. Having determined the energetically most stable configuration for substitutional boron atoms on graphene sheets, we next considered the hydrogen adsorption process as a function of the boron concentration, (ii). Our calculated binding energies indicate that the C-H bonds are strengthened near boron substitutional sites. Indeed, the binding energy of hydrogen adatoms forming a dimer-like structure on the boron doped B1-B2 graphene sheet is higher than the binding energy of an isolated H(2) molecule. Since the formation of the H dimer-like structure may represent the initial stage of the hydrogen clustering process on graphene sheets, we can infer that the formation of H clusters is quite likely not only on clean graphene sheets, which is in consonance with previous studies (Hornekaer et al 2006 Phys. Rev. Lett. 97 186102), but also on B1-B2 boron doped graphene sheets. However, for a low concentration of boron atoms, the formation of H dimer structures is not expected to occur near a single substitutional boron site. That is, the formation (or not) of H clusters on graphene sheets can be tuned by the concentration of substitutional boron atoms.
Resumo:
In this work the interaction of cyclopentene with a set of InP(001) surfaces is investigated by means of the density functional theory. We propose a simple approach for evaluating the surface strain and based on it we have found a linear relation between bond and strain energies and the adsorption energy. Our results also indicate that the higher the bond energy, the more disperse the charge distribution is around the adsorption site associated to the high occupied state, a key feature that characterizes the adsorption process. Different adsorption coverages are used to evaluate the proposed equation. Our results suggest that the proposed approach might be extended to other systems where the interaction of the semiconductor surface and the molecule is restricted to first neighbor sites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The control of morphology and coating of metal surfaces is essential for a number of organic electronic devices including photovoltaic cells and sensors. In this study, we monitor the functionalization of gold surfaces with 11-mercaptoundecanoic acid (MUA, HS(CH(2))(10)CO(2)H) and cysteamine, aiming at passivating the surfaces for application in surface plasmon resonance (SPR) biosensors. Using polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), cyclic voltammetry, atomic force microscopy and quartz crystal microbalance, we observed a time-dependent organization process of the adsorbed MUA monolayer with alkyl chains perpendicular to the gold surface. Such optimized condition for surface passivation was obtained with a systematic search for experimental parameters leading to the lowest electrochemical signal of the functionalized gold electrode. The ability to build supramolecular architectures was also confirmed by detecting with PM-IRRAS the adsorption of streptavidin on the MUA-functionalized gold. As the approaches used for surface functionalization and its verification with PM-IRRAS are generic, one may now envisage monitoring the fabrication of tailored electrodes for a variety of applications.
Resumo:
The adsorption kinetics curves of poly(xylylidene tetrahydrothiophenium chloride) (PTHT), a poly-p-phenylenevinylene (PPV) precursor, and the sodium salt of dodecylbenzene sulfonic acid (DBS), onto (PTHT/DBS)(n) layer-by-layer (LBL) films were characterized by means of UV-vis spectroscopy. The amount of PTHT/DBS and PTHT adsorbed on each layer was shown to be practically independent of adsorption time. A Langmuir-type metastable equilibrium model was used to adjust the adsorption isotherms data and to estimate adsorption/desorption coefficients ratios, k = k(ads)/k(des), values of 2 x 10(5) and 4 x 10(6) for PTHT and PTHT/DBS layers, respectively. The desorption coefficient has been estimated, using literature values for poly(o-methoxyaniline) desorption coefficient, as was found to be in the range of 10(-9) to 10(-6) s(-1), indicating that quasi equilibrium is rapidly attained.