987 resultados para Metabolic intermediate complex
Resumo:
Fernando L. Mantelatto, Leonardo G. Pileggi, Ivana Miranda, and Ingo S. Wehrtmann (2011) Does Petrolisthes armatus (Anomura, Porcellanidae) form a species complex or are we dealing with just one widely distributed species? Zoological Studies 50(3): 372-384. Petrolisthes armatus has the widest distribution known among members of the family Porcellanidae and is one of the most ubiquitous and locally abundant intertidal decapods along the Atlantic coast of the Americas. Considering its geographical distribution and morphological plasticity, several authors postulated the existence of a P. armatus species complex. In the present study we used genetic data from the mitochondrial 16S ribosomal gene to determine the genetic variability of P. armatus from selected locations within its eastern tropical Pacific and western Atlantic distributions. Our phylogenic analysis included 49 specimens represented by 26 species of the genus Petrolisthes and 16 specimens from 10 species and 4 related genera. Genetic distances estimated among the analyzed Petrolisthes species ranged from 2.6%-22.0%; varied between 0%-5.7% for 16S. Additionally, the revision of P. armatus specimens from Pacific Costa Rica and Brazilian Waters showed no geographically significant morphological variations among the analyzed specimens. Therefore, our morphological and genetic data do not support the hypothesis of a P. armatus complex within the specimens studied herein from the Americas, but convincingly confirm the monophyly and non-separateness of the members assigned as P. armatus. http://zoolstud.sinica.edu.tw/Journals/50.3/372.pdf
Resumo:
Soil salinity is a major abiotic stress influencing plant productivity worldwide. Schinopsis quebracho colorado is one of the most important woody species in the Gran Chaco, an and and salt-prone subtropical biome of South America. To gain a better understanding of the physiological mechanisms that allow plant establishment under salt conditions, germination and seedling growth of S. quebracho colorado were examined under treatment with a range of NaCl solutions (germination: 0-300 mmol l(-1) NaCl; seedling growth: 0-200 mmol l(-1) NaCl). The aim was to test the hypothesis that S. quebracho colorado is a glycophite that shows different salt tolerance responses with development stage. Proline content, total soluble carbohydrates and Na+, K+ and Cl- concentrations in leaves and roots of seedlings, and the chlorophyll concentration and relative water content of leaves were measured. Germination was not affected by 100 mmol l(-1) NaCl, but decreased at a concentration of 200 mmol l(-1). At 300 mmol l(-1) NaCl, germination did not occur. Seedling growth decreased drastically with increasing salinity. An increase in NaCl from 0 to 100 mmol l(-1) also significantly reduced the leaf relative water content by 22% and increased the proline concentration by 60% in roots. In contrast, total soluble carbohydrates were not significantly affected by salinity. Seedlings showed a sodium exclusion capacity, and there was an inverse correlation between Cl- concentration and the total chlorophyll concentration. S. quebracho colorado was more tolerant to salinity during germination than in the seedling phase. The results suggest that this increased tolerance during germination might, in part, be the result of lower sensitivity to high tissue Na+ concentrations. The significant increment of proline in the roots suggests the positive role of this amino acid as a compatible solute in balancing the accumulation of Na+ and Cl- as a result of salinity. These results help clarify the physiological mechanisms that allow establishment of S. quebracho colorado on salt-affected soils in arid and semi-arid Gran Chaco. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work reports on the synthesis and characterization of a new complex of Eu(3+) with the 3-hydroxypicolinamide ligand (Hhpa). Here we present an approach for obtaining bis[2-carbamoyl(kappa O)pyridin-3-olato(kappa O`)] lanthanide complexes, which were characterized through elemental analysis, thermal analysis, infrared and photoluminescence spectroscopies (emission, excitation, luminescence lifetimes, quantum efficiencies, Judd-Ofelt parameters and quantum yields). Although hpa can act as a bidentate ligand in different conformations, the results attest for the occurrence of a unique coordination site of low symmetry for the Eu(3+) ions, in which two anionic hpa ligands coordinate the cations through an O/O chelating system. The phosphorescence of the synthesized gadolinium complex provides the energy of the triplet state, which is determined to be at 20,830 cm(-1) over the ground state. This makes the Hhpa ligand very adequate for sensitizing the Eu(3+) luminescence, which leads to a very efficient antenna effect and opens a wide range of applications for the complex in light emitting organic-inorganic devices.
Resumo:
The electronic absorption spectrum of fac[Mn(CO)(3)(phen)imH](+), fac-1 in CH(2)Cl(2) is characterized by a strong absorption band at 378 nm (epsilon(max) = 3200 mol(-1) L cm(-1)). On the basis of quantum mechanical calculations, the visible absorption band has been assigned to ligand-to-ligand charge-transfer (LLCT, im -> phen) and metal-to-ligand charge-transfer (MLCT, Mn -> phen) charge transfer transition. When fac-1 in CH(2)Cl(2) is irradiated with 350 nm continuous light, the absorption features are gradually shifted to represent those of the meridional complex mer-[Mn(CO)(3)(phen)imH](+), mer-1 (lambda(max) = 556 nm). The net photoreaction under these conditions is a photoisomerization, although, the presence of the long-lived radical species was also detected by (1)H NMR and FTIR spectroscopy. 355 nm continuous photolysis of fac-1 in CH(3)CN solution also gives the long-lived intermediate which is readly trapped by metylviologen (MV(2+)) giving rise to the formation of the one-electron reduced methyl viologen (MV(center dot+)). The UV-vis spectra monitored during the slow (45 min) thermal back reaction exhibited isosbestic conversion at 426 nm. On the basis of spectroscopic techniques and quantum mechanical calculations, the role of the radicals produced is analyzed.
Resumo:
This work presents a new oxovanadium(IV)-cucurbit[6]uril complex, which combines the catalytic properties of the metal ion with the size-excluding properties of the macrocycle cavity. In this coordination compound, the VO(2-) ions are coordinated to the oxygen atoms located at the rim of the macrocycle in slightly distorted square-pyramidal configurations, which are in fact C(2v) symmetries. This combination results in a size-selective heterogeneous catalyst, which is able to oxidize linear alkanes like n-pentane at room temperature, but not styrene, cyclohexane or z-cyclooctene, which are too big to enter the cucurbit[6]uril cavity. The results presented here contribute to understanding the mechanism of alkane catalytic oxidation by oxovanadium(IV) complexes. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The solubilization of an europium (III) beta-diketonate chelate in aqueous medium and the changes in its photophysical properties upon its inclusion into an alpha-cyclodextrin hydrophobic cavity are described. The complex [Eu(tta)(3)center dot(H(2)O)(2)] (tta = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione) was synthesized, characterized, and incorporated into the hydrophobic cavity by stirring in an alpha-cyclodextrin aqueous solution. The inclusion was confirmed by (1)H NMR, and the stoichiometry of association was obtained by the Job method. The maximum in the excitation spectrum of the alpha-CD inclusion compound in aqueous solution was shifted 28 nm compared with the maximum of non alpha-CD complex. The emission spectrum of the association is similar to that of the free solid complex and displays the characteristic (5)D(0) -> (7)F(0-4) Eu(3+) transitions.
Resumo:
Background: Xylanases (EC 3.2.1.8) hydrolyze xylan, one of the most abundant plant polysaccharides found in nature, and have many potential applications in biotechnology. Methods: Molecular dynamics simulations were used to investigate the effects of temperature between 298 to 338 K and xylobiose binding on residues located in the substrate-binding cleft of the family 11 xylanase from Bacillus circulans (BcX). Results: In the absence of xylobiose the BcX exhibits temperature dependent movement of the thumb region which adopts an open conformation exposing the active site at the optimum catalytic temperature (328 K). In the presence of substrate, the thumb region restricts access to the active site at all temperatures, and this conformation is maintained by substrate/protein hydrogen bonds involving active site residues, including hydrogen bonds between Tyr69 and the 2` hydroxyl group of the substrate. Substrate access to the active site is regulated by temperature dependent motions that are restricted to the thumb region, and the BcX/substrate complex is stabilized by extensive intermolecular hydrogen bonding with residues in the active site. General significance: These results call for a revision of both the ""hinge-bending"" model for the activity of group 11 xylanases, and the role of Tyr69 in the catalytic mechanism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Four Saccharomyces cerevisiae Brazilian industrial ethanol production strains were grown, under shaken and static conditions, in media containing 22% (w/v) sucrose supplemented with nitrogen sources varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Sucrose fermentations by Brazilian industrial ethanol production yeasts strains were strongly affected by both the structural complexity of the nitrogen source and the availability of oxygen. Data suggest that yeast strains vary in their response to the nitrogen source`s complex structure and to oxygen availability. In addition, the amount of trehalose produced could be correlated with the fermentation performance of the different yeasts, suggesting that efficient fuel ethanol production depends on finding conditions which are appropriate for a particular strain, considering demand and dependence on available nitrogen sources in the fermentation medium.
Resumo:
Glucose and fructose fermentations by industrial yeasts strains are strongly affected by both the structural complexity of the nitrogen Source and the availability of oxygen. In this Study two Saccharomyces cerevisiae industrial wine strains were grown, under shaken and static conditions, in a media containing either a) 20% (w/v) glucose, or b) 10% (w/v) fructose and 10% (w/v) glucose or c) 20% (w/v) fructose, all supplemented with nitrogen Sources varying from a single ammonium salt (ammonium Sulfate) to free amino acids (casamino acids) and peptides (peptone). Data Suggest that 1 complex Structured nitrogen source is not submitted to the same control mechanisms as those involved in the utilization of simpler structured nitrogen Sources, and mutual interaction between carbon and nitrogen Sources, including the mechanisms involved ill the regulation of aerobic/anaerobic metabolism, may play in important role in defining yeast fermentation performance and the differing response to the structural complexity of the nitrogen Source, with a strong impact oil fermentation performance.
Resumo:
No abstract.
Resumo:
Objective-The goal of this study was to assess the independent and collective associations of hepatic steatosis, obesity, and the metabolic syndrome with elevated high-sensitivity C-reactive protein (hs-CRP) levels. Methods and Results-We evaluated 2388 individuals without clinical cardiovascular disease between December 2004 and December 2006. Hepatic steatosis was diagnosed by ultrasound, and the metabolic syndrome was defined using National Heart, Lung, and Blood Institute criteria. The cut point of >= 3 mg/L was used to define high hs-CRP. Multivariate logistic regression was used to assess the independent and collective associations of hepatic steatosis, obesity, and the metabolic syndrome with high hs-CRP. Steatosis was detected in 32% of participants, 23% met criteria for metabolic syndrome, and 17% were obese. After multivariate regression, hepatic steatosis (odds ratio [OR] 2.07; 95% CI 1.68 to 2.56), obesity (OR 3.00; 95% CI 2.39 to 3.80), and the metabolic syndrome (2.39; 95% CI 1.88 to 3.04) were all independently associated with high hs-CRP. Combinations of these factors were associated with an additive increase in the odds of high hs-CRP, with individuals with 1, 2, and 3 factors having ORs for high hs-CRP of 1.92 (1.49 to 2.48), 3.38 (2.50 to 4.57), and 4.53 (3.23 to 6.35), respectively. Conclusion-Hepatic steatosis, obesity, and the metabolic syndrome are independently and additively associated with increased odds of high hs-CRP levels. (Arterioscler Thromb Vasc Biol. 2011; 31: 1927-1932.)
Resumo:
Context: Genetic polymorphisms at the perilipin (PLIN) locus have been investigated for their potential utility as markers for obesity and metabolic syndrome (MS). We examined in obese children and adolescents (OCA) aged 7-14 yr the association of single-nucleotide polymorphisms (SNP) at the PLIN locus with anthropometric, metabolic traits, and weight loss after 20-wk multi-disciplinary behavioral and nutritional treatment without medication. Design: A total of 234 OCA [body mass index (BMI = 30.4 +/- 4.4 kg/m(2); BMI Z-score = 2.31 +/- 0.4) were evaluated at baseline and after intervention. We genotyped four SNPs (PLIN1 6209T -> C, PLIN4 11482G -> A, PLIN5 13041A -> G, and PLIN6 14995A -> T). Results: Allele frequencies were similar to other populations, PLIN1 and PLIN4 were in linkage disequilibrium (D` = 0.999; P < 0.001). At baseline, no anthropometric differences were observed, but minor allele A at PLIN4 was associated with higher triglycerides (111 +/- 49 vs. 94 +/- 42 mg/dl; P = 0.003), lower high-density lipoprotein cholesterol (40 +/- 9 vs. 44 +/- 10 mg/dl; P = 0.003) and higher homeostasis model assessment for insulin resistance (4.0 +/- 2.3 vs. 3.5 +/- 2.1; P +/- 0.015). Minor allele A at PLIN4 was associated with MS risk (age and sex adjusted) hazard ratio 2.4 (95% confidence interval = 1.1-4.9) for genotype GA and 3.5 (95% confidence interval = 1.2-9.9) for AA. After intervention, subjects carrying minor allele T at PLIN6 had increased weight loss (3.3 +/- 3.7 vs. 1.9 +/- 3.4 kg; P = 0.002) and increased loss of the BMI Z-score (0.23 +/- 0.18 vs. 0.18 +/- 0.15; P +/- 0.003). Due to group size, risk of by-chance findings cannot be excluded. Conclusion: The minor A allele at PLIN4 was associated with higher risk of MS at baseline, whereas the PLIN6 SNP was associated with better weight loss, suggesting that these polymorphisms may predict outcome strategies based on multidisciplinary treatment for OCA. (J Clin Endocrinol Metab 93: 4933-4940, 2008)
Resumo:
Background Metabolic syndrome refers to risk factors for cardiovascular disease. Hyperglycemia is a critical component contributing to the predictive power of the syndrome. This study aimed to evaluate the results from the laparoscopic interposition of an ileum segment into the proximal jejunum for the treatment of metabolic syndrome in patients with type 2 diabetes mellitus and a body mass index (BMI) lower than 35. Methods Laparoscopic procedures were performed for 60 patients (24 women and 36 men) with a mean age of 51.7 +/- 6.4 years (range, 27-66 years) and a mean BMI of 30.1 +/- 2.7 (range, 23.6-34.4). All the patients had a diagnosis of type 2 diabetes mellitus (T2DM) given at least 3 years previously and evidence of stable treatment using oral hypoglycemic agents, insulin, or both for at least 12 months. The mean duration of type 2 diabetes mellitus was 9.6 +/- 4.6 years (range, 3-22 years). Metabolic syndrome was diagnosed for all 60 patients. Arterial hypertension was diagnosed for 70% of the patients (mean number of drugs, 1.6) and hypertriglyceridemia for 70%. High-density lipoprotein was altered in 51.7% of the patients and the abdominal circumference in 68.3%. Two techniques were performed: ileal interposition (II) into the proximal jejunum and sleeve gastrectomy (II-SG) or ileal interposition associated with a diverted sleeve gastrectomy (II-DSG). Results The II-SG procedure was performed for 32 patients and the II-DSG procedure for 28 patients. The mean postoperative follow-up period was 7.4 months (range, 3-19 months). The mean BMI was 23.8 +/- 4.1 kg/m(2), and 52 patients (86.7%) achieved adequate glycemic control. Hypertriglyceridemia was normalized for 81.7% of the patients. An high-density lipoprotein level higher than 40 for the men and higher than 50 for the women was achieved by 90.3% of the patients. The abdominal circumference reached was less than 102 cm for the men and 88 cm for the women. Arterial hypertension was controlled in 90.5% of the patients. For the control of metabolic syndrome, II-DSG was the more effective procedure. Conclusions Laparoscopic II-SG and II-DSG seem to be promising procedures for the control of the metabolic syndrome and type 2 diabetes mellitus. A longer follow-up period is needed.