935 resultados para Mesh segmentation
Resumo:
Realizing scalable performance on high performance computing systems is not straightforward for single-phenomenon codes (such as computational fluid dynamics [CFD]). This task is magnified considerably when the target software involves the interactions of a range of phenomena that have distinctive solution procedures involving different discretization methods. The problems of addressing the key issues of retaining data integrity and the ordering of the calculation procedures are significant. A strategy for parallelizing this multiphysics family of codes is described for software exploiting finite-volume discretization methods on unstructured meshes using iterative solution procedures. A mesh partitioning-based SPMD approach is used. However, since different variables use distinct discretization schemes, this means that distinct partitions are required; techniques for addressing this issue are described using the mesh-partitioning tool, JOSTLE. In this contribution, the strategy is tested for a variety of test cases under a wide range of conditions (e.g., problem size, number of processors, asynchronous / synchronous communications, etc.) using a variety of strategies for mapping the mesh partition onto the processor topology.
Resumo:
Parallel computing is now widely used in numerical simulation, particularly for application codes based on finite difference and finite element methods. A popular and successful technique employed to parallelize such codes onto large distributed memory systems is to partition the mesh into sub-domains that are then allocated to processors. The code then executes in parallel, using the SPMD methodology, with message passing for inter-processor interactions. In order to improve the parallel efficiency of an imbalanced structured mesh CFD code, a new dynamic load balancing (DLB) strategy has been developed in which the processor partition range limits of just one of the partitioned dimensions uses non-coincidental limits, as opposed to coincidental limits. The ‘local’ partition limit change allows greater flexibility in obtaining a balanced load distribution, as the workload increase, or decrease, on a processor is no longer restricted by the ‘global’ (coincidental) limit change. The automatic implementation of this generic DLB strategy within an existing parallel code is presented in this chapter, along with some preliminary results.
Resumo:
The most common parallelisation strategy for many Computational Mechanics (CM) (typified by Computational Fluid Dynamics (CFD) applications) which use structured meshes, involves a 1D partition based upon slabs of cells. However, many CFD codes employ pipeline operations in their solution procedure. For parallelised versions of such codes to scale well they must employ two (or more) dimensional partitions. This paper describes an algorithmic approach to the multi-dimensional mesh partitioning in code parallelisation, its implementation in a toolkit for almost automatically transforming scalar codes to parallel form, and its testing on a range of ‘real-world’ FORTRAN codes. The concept of multi-dimensional partitioning is straightforward, but non-trivial to represent as a sufficiently generic algorithm so that it can be embedded in a code transformation tool. The results of the tests on fine real-world codes demonstrate clear improvements in parallel performance and scalability (over a 1D partition). This is matched by a huge reduction in the time required to develop the parallel versions when hand coded – from weeks/months down to hours/days.
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight, however it has been shown that for certain classes of solution algorithm, the convergence of the solver is strongly influenced by the subdomain aspect ratio. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
Multilevel algorithms are a successful class of optimization techniques which addresses the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimization method which refines the partition at each graph level. In this paper we present an enhancement of the technique which uses imbalance to achieve higher quality partitions. We also present a formulation of the Kernighan-Lin partition optimization algorithm which incorporates load-balancing. The resulting algorithm is tested against a different but related state-of-the-art partitioner and shown to provide improved results.
Resumo:
We present a dynamic distributed load balancing algorithm for parallel, adaptive Finite Element simulations in which we use preconditioned Conjugate Gradient solvers based on domain-decomposition. The load balancing is designed to maintain good partition aspect ratio and we show that cut size is not always the appropriate measure in load balancing. Furthermore, we attempt to answer the question why the aspect ratio of partitions plays an important role for certain solvers. We define and rate different kinds of aspect ratio and present a new center-based partitioning method of calculating the initial distribution which implicitly optimizes this measure. During the adaptive simulation, the load balancer calculates a balancing flow using different versions of the diffusion algorithm and a variant of breadth first search. Elements to be migrated are chosen according to a cost function aiming at the optimization of subdomain shapes. Experimental results for Bramble's preconditioner and comparisons to state-of-the-art load balancers show the benefits of the construction.
Resumo:
Three parallel optimisation algorithms, for use in the context of multilevel graph partitioning of unstructured meshes, are described. The first, interface optimisation, reduces the computation to a set of independent optimisation problems in interface regions. The next, alternating optimisation, is a restriction of this technique in which mesh entities are only allowed to migrate between subdomains in one direction. The third treats the gain as a potential field and uses the concept of relative gain for selecting appropriate vertices to migrate. The results are compared and seen to produce very high global quality partitions, very rapidly. The results are also compared with another partitioning tool and shown to be of higher quality although taking longer to compute.
Resumo:
We consider the load-balancing problems which arise from parallel scientific codes containing multiple computational phases, or loops over subsets of the data, which are separated by global synchronisation points. We motivate, derive and describe the implementation of an approach which we refer to as the multiphase mesh partitioning strategy to address such issues. The technique is tested on several examples of meshes, both real and artificial, containing multiple computational phases and it is demonstrated that our method can achieve high quality partitions where a standard mesh partitioning approach fails.
Resumo:
This paper discusses load-balancing issues when using heterogeneous cluster computers. There is a growing trend towards the use of commodity microprocessor clusters. Although today's microprocessors have reached a theoretical peak performance in the range of one GFLOPS/s, heterogeneous clusters of commodity processors are amongst the most challenging parallel systems to programme efficiently. We will outline an approach for optimising the performance of parallel mesh-based applications for heterogeneous cluster computers and present case studies with the GeoFEM code. The focus is on application cost monitoring and load balancing using the DRAMA library.
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for distributing unstructured meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut edge weight in the graph with the aim of minimising the parallel communication overhead, but recently there has been a perceived need to take into account the communications network of the parallel machine. For example the increasing use of SMP clusters (systems of multiprocessor compute nodes with very fast intra-node communications but relatively slow inter-node networks) suggest the use of hierarchical network models. Indeed this requirement is exacerbated in the early experiments with meta-computers (multiple supercomputers combined together, in extreme cases over inter-continental networks). In this paper therefore, we modify a multilevel algorithm in order to minimise a cost function based on a model of the communications network. Several network models and variants of the algorithm are tested and we establish that it is possible to successfully guide the optimisation to reflect the chosen architecture.
Resumo:
We consider the load-balancing problems which arise from parallel scientific codes containing multiple computational phases, or loops over subsets of the data, which are separated by global synchronisation points. We motivate, derive and describe the implementation of an approach which we refer to as the multiphase mesh partitioning strategy to address such issues. The technique is tested on example meshes containing multiple computational phases and it is demonstrated that our method can achieve high quality partitions where a standard mesh partitioning approach fails.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: • a single mesh covering the entire domain, • a Navier–Stokes flow, • a single FV-UM discretisation approach for both the flow and solid mechanics procedures, • an implicit predictor–corrector version of the Newmark algorithm, • a single code embedding the whole strategy.
Resumo:
Computational modelling of dynamic fluid-structure interaction (DFSI) is problematical since conventionally computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. Hence, progress in modelling the emerging multi-physics problem of dynamic fluid-structure interaction in a consistent manner is frustrated and significant problems in computation convergence may be encountered in transferring and filtering data from one mesh and solution procedure to another, unless the fluid-structure coupling is either one way, very weak or both. This paper sets out the solution procedure for modelling the multi-physics dynamic fluid-structure interaction problem within a single software framework PHYSICA, using finite volume, unstructured mesh (FV-UM) procedures and will focus upon some of the problems and issues that have to be resolved for time accurate closely coupled dynamic fluid-structure flutter analysis.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.