945 resultados para Mean Squared Error
Resumo:
Short-TE MRS has been proposed recently as a method for the in vivo detection and quantification of γ-aminobutyric acid (GABA) in the human brain at 3 T. In this study, we investigated the accuracy and reproducibility of short-TE MRS measurements of GABA at 3 T using both simulations and experiments. LCModel analysis was performed on a large number of simulated spectra with known metabolite input concentrations. Simulated spectra were generated using a range of spectral linewidths and signal-to-noise ratios to investigate the effect of varying experimental conditions, and analyses were performed using two different baseline models to investigate the effect of an inaccurate baseline model on GABA quantification. The results of these analyses indicated that, under experimental conditions corresponding to those typically observed in the occipital cortex, GABA concentration estimates are reproducible (mean reproducibility error, <20%), even when an incorrect baseline model is used. However, simulations indicate that the accuracy of GABA concentration estimates depends strongly on the experimental conditions (linewidth and signal-to-noise ratio). In addition to simulations, in vivo GABA measurements were performed using both spectral editing and short-TE MRS in the occipital cortex of 14 healthy volunteers. Short-TE MRS measurements of GABA exhibited a significant positive correlation with edited GABA measurements (R = 0.58, p < 0.05), suggesting that short-TE measurements of GABA correspond well with measurements made using spectral editing techniques. Finally, within-session reproducibility was assessed in the same 14 subjects using four consecutive short-TE GABA measurements in the occipital cortex. Across all subjects, the average coefficient of variation of these four GABA measurements was 8.7 ± 4.9%. This study demonstrates that, under some experimental conditions, short-TE MRS can be employed for the reproducible detection of GABA at 3 T, but that the technique should be used with caution, as the results are dependent on the experimental conditions. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated by the Century model would describe the data better than the mean of observations. So, the aims of the current study were: (i) to evaluate the SOM dynamics using the Century model to simulate the changes of C stocks for two eucalyptus chronosequences in the Rio Doce Valley, Minas Gerais State, Brazil; and (ii) to compare the C stocks simulated by Century with the C stocks measured in soils of different Orders and regions of the Rio Doce Valley growing eucalyptus. In Belo Oriente (BO), short-rotation eucalyptus plantations had been cultivated for 4.0; 13.0, 22.0, 32.0 and 34.0 years, at a lower elevation and in a warmer climate, while in Virginópolis (VG), these time periods were 8.0, 19.0 and 33.0 years, at a higher elevation and in a milder climate. Soil samples were collected from the 0-20 cm layer to estimate C stocks. Results indicate that the C stocks simulated by the Century model decreased after 37 years of poorly managed pastures in areas previously covered by native forest in the regions of BO and VG. The substitution of poorly managed pastures by eucalyptus in the early 1970´s led to an average increase of C of 0.28 and 0.42 t ha-1 year-1 in BO and VG, respectively. The measured C stocks under eucalyptus in distinct soil Orders and independent regions with variable edapho-climate conditions were not far from the values estimated by the Century model (root mean square error - RMSE = 20.9; model efficiency - EF = 0.29) despite the opposite result obtained with the statistical procedure to test the identity of analytical methods. Only for lower soil C stocks, the model over-estimated the C stock in the 0-20 cm layer. Thus, the Century model is highly promising to detect changes in C stocks in distinct soil orders under eucalyptus, as well as to indicate the impact of harvest residue management on SOM in future rotations.
Resumo:
The effects of flow induced by a random acceleration field (g-jitter) are considered in two related situations that are of interest for microgravity fluid experiments: the random motion of isolated buoyant particles, and diffusion driven coarsening of a solid-liquid mixture. We start by analyzing in detail actual accelerometer data gathered during a recent microgravity mission, and obtain the values of the parameters defining a previously introduced stochastic model of this acceleration field. The diffusive motion of a single solid particle suspended in an incompressible fluid that is subjected to such random accelerations is considered, and mean squared velocities and effective diffusion coefficients are explicitly given. We next study the flow induced by an ensemble of such particles, and show the existence of a hydrodynamically induced attraction between pairs of particles at distances large compared with their radii, and repulsion at short distances. Finally, a mean field analysis is used to estimate the effect of g-jitter on diffusion controlled coarsening of a solid-liquid mixture. Corrections to classical coarsening rates due to the induced fluid motion are calculated, and estimates are given for coarsening of Sn-rich particles in a Sn-Pb eutectic fluid, an experiment to be conducted in microgravity in the near future.
Resumo:
Pedotransfer functions (PTF) were developed to estimate the parameters (α, n, θr and θs) of the van Genuchten model (1980) to describe soil water retention curves. The data came from various sources, mainly from studies conducted by universities in Northeast Brazil, by the Brazilian Agricultural Research Corporation (Embrapa) and by a corporation for the development of the São Francisco and Parnaíba river basins (Codevasf), totaling 786 retention curves, which were divided into two data sets: 85 % for the development of PTFs, and 15 % for testing and validation, considered independent data. Aside from the development of general PTFs for all soils together, specific PTFs were developed for the soil classes Ultisols, Oxisols, Entisols, and Alfisols by multiple regression techniques, using a stepwise procedure (forward and backward) to select the best predictors. Two types of PTFs were developed: the first included all predictors (soil density, proportions of sand, silt, clay, and organic matter), and the second only the proportions of sand, silt and clay. The evaluation of adequacy of the PTFs was based on the correlation coefficient (R) and Willmott index (d). To evaluate the PTF for the moisture content at specific pressure heads, we used the root mean square error (RMSE). The PTF-predicted retention curve is relatively poor, except for the residual water content. The inclusion of organic matter as a PTF predictor improved the prediction of parameter a of van Genuchten. The performance of soil-class-specific PTFs was not better than of the general PTF. Except for the water content of saturated soil estimated by particle size distribution, the tested models for water content prediction at specific pressure heads proved satisfactory. Predictions of water content at pressure heads more negative than -0.6 m, using a PTF considering particle size distribution, are only slightly lower than those obtained by PTFs including bulk density and organic matter content.
Resumo:
We develop a covariant quantum theory of fluctuations on vacuum domain walls and strings. The fluctuations are described by a scalar field defined on the classical world sheet of the defects. We consider the following cases: straight strings and planar walls in flat space, true vacuum bubbles nucleating in false vacuum, and strings and walls nucleating during inflation. The quantum state for the perturbations is constructed so that it respects the original symmetries of the classical solution. In particular, for the case of vacuum bubbles and nucleating strings and walls, the geometry of the world sheet is that of a lower-dimensional de Sitter space, and the problem reduces to the quantization of a scalar field of tachyonic mass in de Sitter space. In all cases, the root-mean-squared fluctuation is evaluated in detail, and the physical implications are briefly discussed.
Resumo:
Taking into account the nature of the hydrological processes involved in in situ measurement of Field Capacity (FC), this study proposes a variation of the definition of FC aiming not only at minimizing the inadequacies of its determination, but also at maintaining its original, practical meaning. Analysis of FC data for 22 Brazilian soils and additional FC data from the literature, all measured according to the proposed definition, which is based on a 48-h drainage time after infiltration by shallow ponding, indicates a weak dependency on the amount of infiltrated water, antecedent moisture level, soil morphology, and the level of the groundwater table, but a strong dependency on basic soil properties. The dependence on basic soil properties allowed determination of FC of the 22 soil profiles by pedotransfer functions (PTFs) using the input variables usually adopted in prediction of soil water retention. Among the input variables, soil moisture content θ (6 kPa) had the greatest impact. Indeed, a linear PTF based only on it resulted in an FC with a root mean squared residue less than 0.04 m³ m-3 for most soils individually. Such a PTF proved to be a better FC predictor than the traditional method of using moisture content at an arbitrary suction. Our FC data were compatible with an equivalent and broader USA database found in the literature, mainly for medium-texture soil samples. One reason for differences between FCs of the two data sets of fine-textured soils is due to their different drainage times. Thus, a standardized procedure for in situ determination of FC is recommended.
Resumo:
Field capacity (FC) is a parameter widely used in applied soil science. However, its in situ method of determination may be difficult to apply, generally because of the need of large supplies of water at the test sites. Ottoni Filho et al. (2014) proposed a standardized procedure for field determination of FC and showed that such in situ FC can be estimated by a linear pedotransfer function (PTF) based on volumetric soil water content at the matric potential of -6 kPa [θ(6)] for the same soils used in the present study. The objective of this study was to use soil moisture data below a double ring infiltrometer measured 48 h after the end of the infiltration test in order to develop PTFs for standard in situ FC. We found that such ring FC data were an average of 0.03 m³ m- 3 greater than standard FC values. The linear PTF that was developed for the ring FC data based only on θ(6) was nearly as accurate as the equivalent PTF reported by Ottoni Filho et al. (2014), which was developed for the standard FC data. The root mean squared residues of FC determined from both PTFs were about 0.02 m³ m- 3. The proposed method has the advantage of estimating the soil in situ FC using the water applied in the infiltration test.
Resumo:
STUDY OBJECTIVES: There is limited information regarding sleep duration and determinants in Switzerland. We aimed to assess the trends and determinants of time in bed as a proxy for sleep duration in the Swiss canton of Geneva. METHODS: Data from repeated, independent cross-sectional representative samples of adults (≥ 18 years) of the Geneva population were collected between 2005 and 2011. Self-reported time in bed, education, monthly income, and nationality were assessed by questionnaire. RESULTS: Data from 3,853 participants (50% women, 51.7 ± 10.9 years) were analyzed. No significant trend was observed between 2005 and 2011 regarding time in bed or the prevalence of short (≤ 6 h/day) and long (> 9 h/day) time in bed. Elderly participants reported a longer time in bed (year-adjusted mean ± standard error: 7.67 ± 0.02, 7.82 ± 0.03, and 8.41 ± 0.04 h/day for 35-50, 50-65, and 65+ years, respectively, p < 0.001), while shorter time in bed was reported by non-Swiss participants (7.77 ± 0.03 vs. 7.92 ± 0.03 h/day for Swiss nationals, p < 0.001), participants with higher education (7.92 ± 0.02 for non-university vs. 7.74 ± 0.03 h/day for university, p < 0.001) or higher income (8.10 ± 0.04, 7.84 ± 0.03, and 7.70 ± 0.03 h/day for < 5,000 SFr; 5,000-9,500 SFr, and > 9,500 SFr, respectively, p < 0.001). Multivariable-adjusted polytomous logistic regression showed short and long time in bed to be positively associated with obesity and negatively associated with income. CONCLUSION: In a Swiss adult population, sleep duration as assessed by time in bed did not change significantly between 2005 and 2011. Both clinical and socioeconomic factors influence time in bed.
Resumo:
PURPOSE: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. METHODS AND MATERIALS: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3D statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. RESULTS: Cross-validation revealed a dice similarity of 95% ± 2% for the sclera and cornea and 91% ± 2% for the lens. Overall, mean segmentation error was found to be 0.3 ± 0.1 mm. Average segmentation time was 14 ± 2 s on a standard personal computer. CONCLUSIONS: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.
Resumo:
In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is studied. The performance of the ten lag-one autocorrelation estimators is compared in terms of Mean Square Error (combining bias and variance) using data series generated by Monte Carlo simulation. The results show that there is not a single optimal estimator for all conditions, suggesting that the estimator ought to be chosen according to sample size and to the information available of the possible direction of the serial dependence. Additionally, the probability of labelling an actually existing autocorrelation as statistically significant is explored using Monte Carlo sampling. The power estimates obtained are quite similar among the tests associated with the different estimators. These estimates evidence the small probability of detecting autocorrelation in series with less than 20 measurement times.
Resumo:
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.
Resumo:
A statewide study was conducted to develop regression equations for estimating flood-frequency discharges for ungaged stream sites in Iowa. Thirty-eight selected basin characteristics were quantified and flood-frequency analyses were computed for 291 streamflow-gaging stations in Iowa and adjacent States. A generalized-skew-coefficient analysis was conducted to determine whether generalized skew coefficients could be improved for Iowa. Station skew coefficients were computed for 239 gaging stations in Iowa and adjacent States, and an isoline map of generalized-skew-coefficient values was developed for Iowa using variogram modeling and kriging methods. The skew map provided the lowest mean square error for the generalized-skew- coefficient analysis and was used to revise generalized skew coefficients for flood-frequency analyses for gaging stations in Iowa. Regional regression analysis, using generalized least-squares regression and data from 241 gaging stations, was used to develop equations for three hydrologic regions defined for the State. The regression equations can be used to estimate flood discharges that have recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for ungaged stream sites in Iowa. One-variable equations were developed for each of the three regions and multi-variable equations were developed for two of the regions. Two sets of equations are presented for two of the regions because one-variable equations are considered easy for users to apply and the predictive accuracies of multi-variable equations are greater. Standard error of prediction for the one-variable equations ranges from about 34 to 45 percent and for the multi-variable equations range from about 31 to 42 percent. A region-of-influence regression method was also investigated for estimating flood-frequency discharges for ungaged stream sites in Iowa. A comparison of regional and region-of-influence regression methods, based on ease of application and root mean square errors, determined the regional regression method to be the better estimation method for Iowa. Techniques for estimating flood-frequency discharges for streams in Iowa are presented for determining ( 1) regional regression estimates for ungaged sites on ungaged streams; (2) weighted estimates for gaged sites; and (3) weighted estimates for ungaged sites on gaged streams. The technique for determining regional regression estimates for ungaged sites on ungaged streams requires determining which of four possible examples applies to the location of the stream site and its basin. Illustrations for determining which example applies to an ungaged stream site and for applying both the one-variable and multi-variable regression equations are provided for the estimation techniques.
Resumo:
Image registration has been proposed as an automatic method for recovering cardiac displacement fields from Tagged Magnetic Resonance Imaging (tMRI) sequences. Initially performed as a set of pairwise registrations, these techniques have evolved to the use of 3D+t deformation models, requiring metrics of joint image alignment (JA). However, only linear combinations of cost functions defined with respect to the first frame have been used. In this paper, we have applied k-Nearest Neighbors Graphs (kNNG) estimators of the -entropy (H ) to measure the joint similarity between frames, and to combine the information provided by different cardiac views in an unified metric. Experiments performed on six subjects showed a significantly higher accuracy (p < 0.05) with respect to a standard pairwise alignment (PA) approach in terms of mean positional error and variance with respect to manually placed landmarks. The developed method was used to study strains in patients with myocardial infarction, showing a consistency between strain, infarction location, and coronary occlusion. This paper also presentsan interesting clinical application of graph-based metric estimators, showing their value for solving practical problems found in medical imaging.
Resumo:
The objective of this study was to adapt a nonlinear model (Wang and Engel - WE) for simulating the phenology of maize (Zea mays L.), and to evaluate this model and a linear one (thermal time), in order to predict developmental stages of a field-grown maize variety. A field experiment, during 2005/2006 and 2006/2007 was conducted in Santa Maria, RS, Brazil, in two growing seasons, with seven sowing dates each. Dates of emergence, silking, and physiological maturity of the maize variety BRS Missões were recorded in six replications in each sowing date. Data collected in 2005/2006 growing season were used to estimate the coefficients of the two models, and data collected in the 2006/2007 growing season were used as independent data set for model evaluations. The nonlinear WE model accurately predicted the date of silking and physiological maturity, and had a lower root mean square error (RMSE) than the linear (thermal time) model. The overall RMSE for silking and physiological maturity was 2.7 and 4.8 days with WE model, and 5.6 and 8.3 days with thermal time model, respectively.
Resumo:
The objective of this work was to determine the sensitivity of maize (Zea mays) genotypes to water deficit, using a simple agrometeorological crop yield model. Crop actual yield and agronomic data of 26 genotypes were obtained from the Maize National Assays carried out in ten locations, in four Brazilian states, from 1998 to 2006. Weather information for each experimental location and period were obtained from the closest weather station. Water deficit sensitivity index (Ky) was determined using the crop yield depletion model. Genotypes can be divided into two groups according to their resistance to water deficit. Normal resistance genotypes had Ky ranging from 0.4 to 0.5 in vegetative period, 1.4 to 1.5 in flowering, 0.3 to 0.6 in fruiting, and 0.1 to 0.3 in maturing period, whereas the higher resistance genotypes had lower values, respectively 0.2-0.4, 0.7-1.2, 0.2-0.4, and 0.1-0.2. The general Ky for the total growing season was 2.15 for sensitive genotypes and 1.56 for the resistant ones. Model performance was acceptable to evaluate crop actual yield, whose average errors estimated for each genotype ranged from -5.7% to +5.8%, and whose general mean absolute error was 960 kg ha-1 (10%).