946 resultados para Machine à vecteurs de support
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.
Resumo:
The recently proposed data-driven background dataset refinement technique provides a means of selecting an informative background for support vector machine (SVM)-based speaker verification systems. This paper investigates the characteristics of the impostor examples in such highly-informative background datasets. Data-driven dataset refinement individually evaluates the suitability of candidate impostor examples for the SVM background prior to selecting the highest-ranking examples as a refined background dataset. Further, the characteristics of the refined dataset were analysed to investigate the desired traits of an informative SVM background. The most informative examples of the refined dataset were found to consist of large amounts of active speech and distinctive language characteristics. The data-driven refinement technique was shown to filter the set of candidate impostor examples to produce a more disperse representation of the impostor population in the SVM kernel space, thereby reducing the number of redundant and less-informative examples in the background dataset. Furthermore, data-driven refinement was shown to provide performance gains when applied to the difficult task of refining a small candidate dataset that was mis-matched to the evaluation conditions.
Resumo:
In a much anticipated judgment, the Federal Circuit has sought to clarify the standards applicable in determining whether a claimed method constitutes patent-eligible subject matter. In Bilski, the Federal Circuit identified a test to determine whether a patentee has made claims that pre-empt the use of a fundamental principle or an abstract idea or whether those claims cover only a particular application of a fundamental principle or abstract idea. It held that the sole test for determining subject matter eligibility for a claimed process under § 101 is that: (1) it is tied to a particular machine or apparatus, or (2) it transforms a particular article into a different state or thing. The court termed this the “machine-or-transformation test.” In so doing it overruled its earlier State Street decision to the extent that it deemed its “useful, tangible and concrete result” test as inadequate to determine whether an alleged invention recites patent-eligible subject matter.
Resumo:
The research described in this paper is directed toward increasing productivity of draglines through automation. In particular, it focuses on the swing-to-dump, dump, and return-to-dig phases of the dragline operational cycle by developing a swing automation system. In typical operation the dragline boom can be in motion for up to 80% of the total cycle time. This provides considerable scope for improving cycle time through automated or partially automated boom motion control. This paper describes machine vision based sensor technology and control algorithms under development to solve the problem of continuous real time bucket location and control. Incorporation of this capability into existing dragline control systems will then enable true automation of dragline swing and dump operations.
Resumo:
This paper proposes a novel automated separation management concept in which onboard decision support is integrated within a centralised air traffic separation management system. The onboard decision support system involves a decentralised separation manager that can overrule air traffic management instructions under certain circumstances. This approach allows the advantages of both centralised and decentralised concepts to be combined (and disadvantages of each separation management approach to be mitigated). Simulation studies are used to illustrate the potential benefits of the combined separation management concept.
Resumo:
Queensland University of Technology (QUT) is a large multidisciplinary university located in Brisbane, Queensland, Australia. QUT is increasing its research focus and is developing its research support services. It has adopted a model of collaboration between the Library, High Performance Computing and Research Support (HPC) and more broadly with Information Technology Services (ITS). Research support services provided by the Library include the provision of information resources and discovery services, bibliographic management software, assistance with publishing (publishing strategies, identifying high impact journals, dealing with publishers and the peer review process), citation analysis and calculating authors’ H Index. Research data management services are being developed by the Library and HPC working in collaboration. The HPC group within ITS supports research computing infrastructure, research development and engagement activities, researcher consultation, high speed computation and data storage systems , 2D/ 3D (immersive) visualisation tools, parallelisation and optimization of research codes, statistics/ data modeling training and support (both qualitative and quantitative) and support for the university’s central Access Grid collaboration facility. Development and engagement activities include participation in research grants and papers, student supervision and internships and the sponsorship, incubation and adoption of new computing technologies for research. ITS also provides other services that support research including ICT training, research infrastructure (networking, data storage, federated access and authorization, virtualization) and corporate systems for research administration. Seminars and workshops are offered to increase awareness and uptake of new and existing services. A series of online surveys on eResearch practices and skills and a number of focus groups was conducted to better inform the development of research support services. Progress towards the provision of research support is described within the context organizational frameworks; resourcing; infrastructure; integration; collaboration; change management; engagement; awareness and skills; new services; and leadership. Challenges to be addressed include the need to redeploy existing operational resources toward new research support services, supporting a rapidly growing research profile across the university, the growing need for the use and support of IT in research programs, finding capacity to address the diverse research support needs across the disciplines, operationalising new research support services following their implementation in project mode, embedding new specialist staff roles, cross-skilling Liaison Librarians, and ensuring continued collaboration between stakeholders.
Resumo:
When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.
Resumo:
While IS function has gained widespread attention for over two decades, there is little consensus among information systems (IS) researchers and practitioners on how best to evaluate IS function's support performance. This paper reports on preliminary findings of a larger research effort proceeds from a central interest in the importance of evaluating IS function's support in organisations. This study is the first that attempts to re-conceptualise and conceive evaluate IS function's support as a multi- dimensional formative construct. We argue that a holistic measure for evaluating evaluate IS function's support should consist of dimensions that together assess the variety of the support functions and the quality of the support services provided to end-users. Thus, the proposed model consists of two halves, "Variety" and "Quality" within which resides seven dimensions. The Variety half includes five dimensions: Training; Documentation; Data- related Support, Software-related Support; and Hardware-related Support. The Quality half includes two dimensions: IS Support Staff and Support Services Performance. The proposed model is derived using a directed content analysis of 83 studies; from top IS outlets, employing the characteristics of the analytic theory and consistent with formative construct development procedures.
Resumo:
The Java programming language has potentially significant advantages for wireless sensor nodes but there is currently no feature-rich, open source virtual machine available. In this paper we present Darjeeling, a system comprising offline tools and a memory efficient run-time. The offline post-compiler tool analyzes, links and consolidates Java class files into loadable modules. The runtime implements a modified Java VM that supports multithreading and is designed specifically to operate in constrained execution environments such as wireless sensor network nodes and supports inheritance, threads, garbage collection, and loadable modules. We have demonstrated Java running on AVR128 and MSP430 microcontrollers at speeds of up to 70,000 JVM instructions per second.
Resumo:
The Java programming language enjoys widespread popularity on platforms ranging from servers to mobile phones. While efforts have been made to run Java on microcontroller platforms, there is currently no feature-rich, open source virtual machine available. In this paper we present Darjeeling, a system comprising offline tools and a memory efficient runtime. The offline post-compiler tool analyzes, links and consolidates Java class files into loadable modules. The runtime implements a modified Java VM that supports multithreading and is designed specifically to operate in constrained execution environments such as wireless sensor network nodes. Darjeeling improves upon existing work by supporting inheritance, threads, garbage collection, and loadable modules while keeping memory usage to a minimum. We have demonstrated Java running on AVR128 and MSP430 micro-controllers at speeds of up to 70,000 JVM instructions per second.
Resumo:
The article described an open-source toolbox for machine vision called Machine Vision Toolbox (MVT). MVT includes more than 60 functions including image file reading and writing, acquisition, display, filtering, blob, point and line feature extraction, mathematical morphology, homographies, visual Jacobians, camera calibration, and color space conversion. MVT can be used for research into machine vision but is also versatile enough to be usable for real-time work and even control. MVT, combined with MATLAB and a model workstation computer, is a useful and convenient environment for the investigation of machine vision algorithms. The article illustrated the use of a subset of toolbox functions for some typical problems and described MVT operations including the simulation of a complete image-based visual servo system.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systems-based decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
Many airports around the world are diversifying their land use strategies to integrate non-aeronautical development. These airports embrace the “airport city” concept to develop a wide range of commercial and light industrial land uses to support airport revenues. The consequences of this changing urban form are profound for both airport and municipal planners alike and present numerous challenges with regard to integration of airport and regional planning. While several tools exist for regional planning and airport operational planning, no holistic airport landside and regional planning tool exist. What is required is a planning support system that can integrate the sometimes conflicting stakeholder interests into one common goal for the airport and the surrounding region. This paper presents a planning support system and evaluates its application to a case study involving Brisbane Airport and the South East Queensland region in Australia.
Resumo:
Indigenous men’s support groups are designed to empower men to take greater control and responsibility for their health and wellbeing. They provide health education sessions, counselling, men’s health clinics, diversionary programs for men facing criminal charges, cultural activities, drug- and alcohol-free social events, and advocacy for resources. Despite there being ~100 such groups across Australia, there is a dearth of literature on their strategies and outcomes. This paper is based on participatory action research involving two north Queensland groups which were the subject of a series of five ‘phased’ evaluative reports between 2002 and 2007. By applying ‘meta-ethnography’ to the five studies, we identified four themes which provide new interpretations of the data. Self-reported benefits included improved social and emotional wellbeing, modest lifestyle modifications and willingness to change current notions of ‘gendered’ roles within the home, such as sharing housework. Our qualitative research to date suggests that through promoting empowerment, wellbeing and social cohesion for men and their families, men’s support groups may be saving costs through reduced expenditure on health care, welfare, and criminal justice costs, and higher earnings. Future research needs to demonstrate this empirically.