976 resultados para MYCN-AMPLIFICATION
Resumo:
We propose a modification of the nonlinear digital signal processing technique based on the nonlinear inverse synthesis for the systems with distributed Raman amplification. The proposed path-average approach offers 3 dB performance gain, regardless of the signal power profile.
Resumo:
We demonstrate that a distributed Raman amplification scheme based on random distributed feedback (DFB) fiber laser enables bidirectional second-order Raman pumping without increasing relative intensity noise (RIN) of the signal. This extends the reach of 10 × 116 Gb/s DP-QPSK WDM transmission up to 7915 km, compared with conventional Raman amplification schemes. Moreover, this scheme gives the longest maximum transmission distance among all the Raman amplification schemes presented in this paper, whilst maintaining relatively uniform and symmetric signal power distribution, and is also adjustable in order to be highly compatible with different nonlinearity compensation techniques, including mid-link optical phase conjugation (OPC) and nonlinear Fourier transform (NFT).
Resumo:
The performance of unrepeatered transmission of a seven Nyquist-spaced 10 GBd PDM-16QAM superchannel using full signal band coherent detection and multi-channel digital back propagation (MC-DBP) to mitigate nonlinear effects is analysed. For the first time in unrepeatered transmission, the performance of two amplification systems is investigated and directly compared in terms of achievable information rates (AIRs): 1) erbium-doped fibre amplifier (EDFA) and 2) second-order bidirectional Raman pumped amplification. The experiment is performed over different span lengths, demonstrating that, for an AIR of 6.8 bit/s/Hz, the Raman system enables an increase of 93 km (36 %) in span length. Further, at these distances, MC-DBP gives an improvement in AIR of 1 bit/s/Hz (to 7.8 bit/s/Hz) for both amplification schemes. The theoretical AIR gains for Raman and MC-DBP are shown to be preserved when considering low-density parity-check codes. Additionally, MC-DBP algorithms for both amplification schemes are compared in terms of performance and computational complexity. It is shown that to achieve the maximum MC-DBP gain, the Raman system requires approximately four times the computational complexity due to the distributed impact of fibre nonlinearity.
Resumo:
We experimentally investigate three Raman fibre laser based amplification techniques with second-order bidirectional pumping. Relatively intensity noise (RIN) being transferred to the signal can be significantly suppressed by reducing first-order reflection near the input end. © 2015 OSA.
Resumo:
We numerically optimise in-span signal power asymmetry in advanced Raman amplification schemes, reaching 3% over 62 km SMF, and evaluate its impact on the performance of systems using mid-link OPC using 7 × 15 16QAM Nyquist-spaced WDM-PDM. © 2015 OSA.
Resumo:
We numerically optimise in-span signal power asymmetry in different advanced Raman amplification schemes, achieving a 3% asymmetry over 62 km SMF using random DFB Raman laser amplifier. We then evaluate the impact of such asymmetry on the performance of systems using mid-link OPC by simulating transmission of 7 x 15 Gbaud 16QAM Nyquist-spaced WDM-PDM signals. (C) 2015 Optical Society of America
Resumo:
We propose and experimentally demonstrate a new method to extend the range of Brillouin optical time domain analysis (BOTDA) systems. It exploits the virtual transparency created by second-order Raman pumping in optical fibers. The idea is theoretically analyzed and experimentally demonstrated in a 50 km fiber. By working close to transparency, we also show that the measurement length of the BOTDA can be increased up to 100 km with 2 meter resolution. We envisage extensions of this technique to measurement lengths well beyond this value, as long as the issue of relative intensity noise (RIN) of the primary Raman pump can be avoided. © 2010 Optical Society of America.
Resumo:
We investigate numerically the effect of ultralong Raman laser fiber amplifier design parameters, such as span length, pumping distribution and grating reflectivity, on the RIN transfer from the pump to the transmitted signal. Comparison is provided to the performance of traditional second-order Raman amplified schemes, showing a relative performance penalty for ultralong laser systems that gets smaller as span length increases. We show that careful choice of system parameters can be used to partially offset such penalty. © 2010 Optical Society of America.
Resumo:
The thesis presents a detailed study of different Raman fibre laser (RFL) based amplification techniques and their applications in long-haul/unrepeatered coherent transmission systems. RFL based amplifications techniques were characterised from different aspects, including signal/noise power distributions, relative intensity noise (RIN), mode structures of induced Raman fibre lasers, and so on. It was found for the first time that RFL based amplification techniques could be divided into three categories in terms of the fibre laser regime, which were Fabry-Perot fibre laser with two FBGs, weak Fabry-Perot fibre laser with one FBG and very low reflection near the input, and random distributed feedback (DFB) fibre laser with one FBG. It was also found that lowering the reflection near the input could mitigate the RIN of the signal significantly, thanks to the reduced efficiency of the Stokes shift from the FW-propagated pump. In order to evaluate the transmission performance, different RFL based amplifiers were evaluated and optimised in long-haul coherent transmission systems. The results showed that Fabry-Perot fibre laser based amplifier with two FBGs gave >4.15 dB Q factor penalty using symmetrical bidirectional pumping, as the RIN of the signal was increased significantly. However, random distributed feedback fibre laser based amplifier with one FBG could mitigate the RIN of the signal, which enabled the use of bidirectional second order pumping and consequently give the best transmission performance up to 7915 km. Furthermore, using random DFB fibre laser based amplifier was proved to be effective to combat the nonlinear impairment, and the maximum reach was enhanced by >28% in mid-link single/dual band optical phase conjugator (OPC) transmission systems. In addition, unrepeatered transmission over >350 km fibre length using RFL based amplification technique were presented experimentally using DP-QPSK and DP-16QAM transmitter.
Resumo:
This dissertation delivers a framework to diagnose the Bull-Whip Effect (BWE) in supply chains and then identify methods to minimize it. Such a framework is needed because in spite of the significant amount of literature discussing the bull-whip effect, many companies continue to experience the wide variations in demand that are indicative of the bull-whip effect. While the theory and knowledge of the bull-whip effect is well established, there still is the lack of an engineering framework and method to systematically identify the problem, diagnose its causes, and identify remedies. ^ The present work seeks to fill this gap by providing a holistic, systems perspective to bull-whip identification and diagnosis. The framework employs the SCOR reference model to examine the supply chain processes with a baseline measure of demand amplification. Then, research of the supply chain structural and behavioral features is conducted by means of the system dynamics modeling method. ^ The contribution of the diagnostic framework, is called Demand Amplification Protocol (DAMP), relies not only on the improvement of existent methods but also contributes with original developments introduced to accomplish successful diagnosis. DAMP contributes a comprehensive methodology that captures the dynamic complexities of supply chain processes. The method also contributes a BWE measurement method that is suitable for actual supply chains because of its low data requirements, and introduces a BWE scorecard for relating established causes to a central BWE metric. In addition, the dissertation makes a methodological contribution to the analysis of system dynamic models with a technique for statistical screening called SS-Opt, which determines the inputs with the greatest impact on the bull-whip effect by means of perturbation analysis and subsequent multivariate optimization. The dissertation describes the implementation of the DAMP framework in an actual case study that exposes the approach, analysis, results and conclusions. The case study suggests a balanced solution between costs and demand amplification can better serve both firms and supply chain interests. Insights pinpoint to supplier network redesign, postponement in manufacturing operations and collaborative forecasting agreements with main distributors.^
Resumo:
We have modified a technique which uses a single pair of primer sets directed against homologous but distinct genes on the X and Y chromosomes, all of which are coamplified in the same reaction tube with trace amounts of radioactivity. The resulting bands are equal in length, yet distinguishable by restriction enzyme sites generating two independent bands, a 364 bp X-specific band and a 280 bp Y-specific band. A standard curve was generated to show the linear relationship between X/Y ratio average vs. %Y or %X chromosomal content. Of the 51 purified amniocyte DNA samples analyzed, 16 samples showed evidence of high % X contamination while 2 samples demonstrated higher % Y than the expected 50% X and 50% Y chromosomal content. With regards to the 25 processed sperm samples analyzed, X-sperm enrichment was evident when compared to the primary sex ratio whereas Y-sperm was enriched when we compared before and after selection samples.
Resumo:
Among the different possible amplification solutions offered by Raman scattering in optical fibers, ultra-long Raman lasers are particularly promising as they can provide quasi-losless second order amplification with reduced complexity, displaying excellent potential in the design of low-noise long-distance communication systems. Still, some of their advantages can be partially offset by the transfer of relative intensity noise from the pump sources and cavity-generated Stokes to the transmitted signal. In this paper we study the effect of ultra-long cavity design (length, pumping, grating reflectivity) on the transfer of RIN to the signal, demonstrating how the impact of noise can be greatly reduced by carefully choosing appropriate cavity parameters depending on the intended application of the system. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
This paper explores the ways in which consumers’ brand trust during a brand crisis is affected through direct experience versus when it is amplified through mass media. By using case-study methodology, our findings reveal that generalised public images of a product crisis initiate a public perception of risk, which provides more negative effects on brand trust than the actual consumers’ experience does. We introduce the media as a third partner influencing the trust relationship between consumers and brands, and offer suggestions for restoring and preserving customers’ brand trust.
Resumo:
The aim of this study was to develop a multiplex loop-mediated isothermal amplification (LAMP) method capable of detecting Escherichia coli generally and verocytotoxigenic E. coli (VTEC) specifically in beef and bovine faeces. The LAMP assay developed was highly specific (100%) and able to distinguish between E. coli and VTEC based on the amplification of the phoA, and stx1 and/or stx2 genes, respectively. In the absence of an enrichment step, the limit of detection 50% (LOD50) of the LAMP assay was determined to be 2.83, 3.17 and 2.83-3.17 log CFU/g for E. coli with phoA, stx1 and stx2 genes, respectively, when artificially inoculated minced beef and bovine faeces were tested. The LAMP calibration curves generated with pure cultures, and spiked beef and faeces, suggested that the assay had good quantification capability. Validation of the assay, performed using retail beef and bovine faeces samples, demonstrated good correlation between counts obtained by the LAMP assay and by a conventional culture method, but suggested the possibility of false negative LAMP results for 12.5-14.7% of samples tested. The multiplex LAMP assay developed potentially represents a rapid alternative to culture for monitoring E.coli levels in beef or faeces and it would provide additional information on the presence of VTEC. However, some further optimisation is needed to improve detection sensitivity.
Resumo:
In this paper, the level of dynamics, as described by the Assessment Dynamic Ratio (ADR), is measured directly through a field test on a bridge in the United Kingdom. The bridge was instrumented using fiber optic strain sensors and piezo-polymer weigh-in-motion sensors were installed in the pavement on the approach road. Field measurements of static and static-plus-dynamic strains were taken over 45 days. The results show that, while dynamic amplification is large for many loading events, these tend not to be the critical events. ADR, the allowance that should be made for dynamics in an assessment of safety, is small.