909 resultados para MG ALLOYS
Resumo:
The authors have measured longitudinal and transverse magnetoresistance (MR) of crystalline pseudo-binary alloys FexNi80-xCr20 (50
Resumo:
The constitutive behaviour of agr — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the ldquodynamic materials modelrdquo of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.
Resumo:
The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.
Measurement for Thermal Effusivity of AlxGa1-xN Alloys Using Thermoreflectance with Periodic Heating
Resumo:
AlxGa1-xN alloys with x=0.375, 0.398, 0.401, 0.592 and 0.696 were deposited on sapphire substrate by the hydride-vapor-phase epitaxy (HVPE) method. Thermal effusivity measurements were carried out on AlxGa1-xN alloys using a thermal microscope at room temperature. The lag between sinusoidal heating laser wave and thermoreflectance wave was used to measure the thermal diffusivity. Thermal conductivity values of the AlxGa1-xN alloys were also obtained as a function of AIN mole fraction in the alloy. The thermal conductivity was found to decrease with increasing AIN fraction and the experimental data agree with values estimated using the virtual crystal model.
Resumo:
Electron diffraction studies were carried out to establish the icosahedral phase formation in rapidly quenched Ti-37 at% Mn and Ti-24 at% Mn-13 at% Fe alloys. Distortions in the diffraction spots and diffuse intensities in the diffraction patterns were investigated. The existence of a rational approximant structure and a decagonal like phase are also reported.
Resumo:
Minor addition of B to the Ti-6Al-4V alloy reduces the prior beta grain size by more than an order of magnitude. TiB formed in-situ in the process has been noted to decorate the grain boundaries. This microstructural modification influences the mechanical behavior of the Ti-6Al-4V alloy significantly. In this paper, an overview of our current research on tensile properties, fracture toughness as well as notched and un-notched fatigue properties of Ti-6Al-4V-xB with x varying between 0.0 to 0.55 wt.% is presented. A quantitative relationship between the microstructural length scales and the various mechanical properties have been developed. Moreover, the effect of the presence of hard and brittle TiB has also been studied.
Resumo:
Tensile experiments at 673 K and grain sizes from similar to 8 to 17 mu m revealed large ductility at a low strain rate and a reduced ductility at a high strain rate, corresponding to a change from a high to a low value for the strain rate sensitivity. High strain rate deformation led to fracture by flow localization, whereas low strain rate deformation involved fracture by cavity nucleation and growth. Analysis revealed that grain boundary migration can assist significantly in reducing the stress concentrations caused by grain boundary sliding, thereby retarding cavity nucleation. Calculations demonstrate that the interlinkage of voids parallel and perpendicular to the tensile axis occurs significantly, so that it is not always possible to use the cavity shapes to distinguish between diffusion and plasticity controlled growth. Cavitation damage evolves slowly in materials with a coarser grain size because of reduced nucleation related to a reduction in the strain rate sensitivity and associated grain boundary sliding. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)(2), with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x >= 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of similar to 27 angstrom. At lower packing densities (x < 0.2) the surfactant chains form a monolayer with the alkyl chains oriented flat in the galleries with an interlayer spacing of similar to 8 angstrom. For the in between compositions, 0.2 <= x < 0.3, the material is biphasic. MD simulations were performed to understand how the anchoring density of the intercalated surfactant chains in the Mg-Al LDH-DDS affects the organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.
Resumo:
We have measured the internal friction and speed of sound in several polycrystalline alloys, using compound torsional oscillators at frequencies between 60 kHz and 100 kHz and temperatures between 50 mK and 100 K. By combining these data with existing elastic and thermal data on similar alloys, we find that those alloys which can undergo diffusionsless phase transitions, such as Ti:Nb, Ti:V, or Zr:Nb in certain ranges of composition have glasslike excitations, since they have elastic properties which agree in magnitude and temperature dependence with those of amorphous solids. By contrast, crystalline continuous solution alloys, such as Nb:Ta, or alloys with diffusive phase transitions, such as high-pressure quenched Al94Si6, have the same elastic properties as are known for crystals.
Resumo:
The reaction between Fe foil and a disc of ilmenite solid solution (Co-0.48 Ni-0.52) TiO3 was studied at 1273 K. At the metal/oxide interface, the displacement reaction, Fe + (Co,Mg)TiO3 = Co + (Fe,Mg)TiO3 occurs, resulting in an ilmenite solid solution containing three divalent cations. Ferrous ions diffuse into the oxide solid solution and cause the precipitation of Co-Fe alloy as discrete particles inside the oxide matrix. The morphology of the product layer was characterized by SEM. Only two phases, alloy and ilmenite, were detected in the reaction zone. This suggests that the local flux condition imposed by ilmenite stoichiometry (Co + Fe + Mg):Ti = 1:1] was satisfied during the reactive diffusion: (J(Co) + J(Fe) + J(Mg)) = J(Ti). The composition of the alloy and the oxide was determined using EPMA as a function of distance in the direction of diffusion. Although Mg does not participate in the displacement reaction, its composition in the ilmenite phase was found to be position dependent inside the reaction zone. The up-hill diffusion of inert Mg is caused by the development of chemical potential gradients as a result of displacement reaction. The evolution of composition gradients inside the reaction zone and the diffusion path in a ternary composition diagram of the system CoTiO3-FeTiO3-MgTiO3 are discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper we report the mechanical alloying behaviour of elemental aluminium with diamond cubic elements Ge and Si. A metastable crystalline phase with rhombohedral crystal structure forms in Al-70 Ge-30 and Al-60 Ge-40 alloy compositions. The phase always coexists with elemental constituents and decomposes over a broad temperature range. No such metastable phase could be observed in the Al-Si system. We also report X-ray diffractometry and differential scanning calorimetry results suggestive of amorphization. Finally a comparison was made of the present result with that obtained in rapid solidification.
Resumo:
The coexistence of quasicrystals and rational approximant structures (RAS) has been observed in melt-spun Al80Cr14Si6, Al80Mn14Si6 and Al75Mn10Cr5Si10 alloys. The presence of a b.c.c. alpha-AlMnSi phase in Al-Mn-Si and alpha-AlMnSi(Cr) phase in Al-Mn-Cr-Si has been seen. A multiple twinning around an irrational axis of the RAS has been reported in an aggregate of fine size cubic crystallites in all three alloys. Selected area diffraction patterns show that the crystalline aggregate symmetry is linked to the icosahedral point group symmetry (m35). Various ways of expressing the twin relationship in the cubic crystalline aggregates have been discussed. The thermal stability of the icosahedral phase at high temperatures reveals that the icosahedral phase in Al-Mn-Si and Al-Mn-Cr-Si alloys transforms to alpha-AlMnSi at temperatures of 690 and 670 K, respectively. In Al-Cr-Si alloy, heating to a high temperature (615 K) leads to the transformation of the icosahedral phase into a new metastable phase having an ordered cubic structure equivalent to alpha-AlMnSi. The occurrence of multiple twinning leading to icosahedral symmetry in the as-spun Al-Cr-Si alloy is presumably due to this metastable phase. Copyright (C) 1996 Acta Metallurgica Inc.