902 resultados para MESON-EXCHANGE MODEL
Resumo:
Construction planning plays a fundamental role in construction project management that requires team working among planners from a diverse range of disciplines and in geographically dispersed working situations. Model-based four-dimensional (4D) computer-aided design (CAD) groupware, though considered a possible approach to supporting collaborative planning, is still short of effective collaborative mechanisms for teamwork due to methodological, technological and social challenges. Targeting this problem, this paper proposes a model-based groupware solution to enable a group of multidisciplinary planners to perform real-time collaborative 4D planning across the Internet. In the light of the interactive definition method, and its computer-supported collaborative work (CSCW) design analysis, the paper discusses the realization of interactive collaborative mechanisms from software architecture, application mode, and data exchange protocol. These mechanisms have been integrated into a groupware solution, which was validated by a planning team in a truly geographically dispersed condition. Analysis of the validation results revealed that the proposed solution is feasible for real-time collaborative 4D planning to gain a robust construction plan through collaborative teamwork. The realization of this solution triggers further considerations about its enhancement for wider groupware applications.
Resumo:
In the first part of this article, we introduced a new urban surface scheme, the Met Office – Reading Urban Surface Exchange Scheme (MORUSES), into the Met Office Unified Model (MetUM) and compared its impact on the surface fluxes with respect to the current urban scheme. In this second part, we aim to analyze further the reasons behind the differences. This analysis is conducted by a comparison of the performance of the two schemes against observations and against a third model, the Single Column Reading Urban model (SCRUM). The key differences between the three models lie in how each model incorporates the heat stored in the urban fabric and how the surface-energy balance is coupled to the underlying substrate. The comparison of the models with observations from Mexico City reveals that the performance of MORUSES is improved if roof insulation is included by minimizing the roof thickness. A comparison of MORUSES and SCRUM reveals that, once insulation is included within MORUSES, these two models perform equally well against the observations overall, but that there are differences in the details of the simulations at the roof and canyon level. These differences are attributed to the different representations of the heat-storage term, specifically differences in the dominant frequencies captured by the urban canopy and substrate, between the models. These results strongly suggest a need for an urban model intercomparison exercise. Copyright © 2010 Royal Meteorological Society and Crown Copyright
Resumo:
We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.
Resumo:
An analysis of observational data in the Barents Sea along a meridian at 33°30' E between 70°30' and 72°30' N has reported a negative correlation between El Niño/La Niña Southern Oscillation (ENSO) events and water temperature in the top 200 m: the temperature drops about 0.5 °C during warm ENSO events while during cold ENSO events the top 200 m layer of the Barents Sea is warmer. Results from 1 and 1/4-degree global NEMO models show a similar response for the whole Barents Sea. During the strong warm ENSO event in 1997–1998 an anomalous anticyclonic atmospheric circulation over the Barents Sea enhances heat loses, as well as substantially influencing the Barents Sea inflow from the North Atlantic, via changes in ocean currents. Under normal conditions along the Scandinavian peninsula there is a warm current entering the Barents Sea from the North Atlantic, however after the 1997–1998 event this current is weakened. During 1997–1998 the model annual mean temperature in the Barents Sea is decreased by about 0.8 °C, also resulting in a higher sea ice volume. In contrast during the cold ENSO events in 1999–2000 and 2007–2008, the model shows a lower sea ice volume, and higher annual mean temperatures in the upper layer of the Barents Sea of about 0.7 °C. An analysis of model data shows that the strength of the Atlantic inflow in the Barents Sea is the main cause of heat content variability, and is forced by changing pressure and winds in the North Atlantic. However, surface heat-exchange with the atmosphere provides the means by which the Barents sea heat budget relaxes to normal in the subsequent year after the ENSO events.
Resumo:
We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus view to prevent over-confidence in forecasts from any single model, and establish current collective capability. We stress that the forecast is experimental, since the skill of the multi-model system is as yet unknown. Nevertheless, the forecast systems used here are based on models that have undergone rigorous evaluation and individually have been evaluated for forecast skill. Moreover, it is important to publish forecasts to enable open evaluation, and to provide a focus on climate change in the coming decade. Initialized forecasts of the year 2011 agree well with observations, with a pattern correlation of 0.62 compared to 0.31 for uninitialized projections. In particular, the forecast correctly predicted La Niña in the Pacific, and warm conditions in the north Atlantic and USA. A similar pattern is predicted for 2012 but with a weaker La Niña. Indices of Atlantic multi-decadal variability and Pacific decadal variability show no signal beyond climatology after 2015, while temperature in the Niño3 region is predicted to warm slightly by about 0.5 °C over the coming decade. However, uncertainties are large for individual years and initialization has little impact beyond the first 4 years in most regions. Relative to uninitialized forecasts, initialized forecasts are significantly warmer in the north Atlantic sub-polar gyre and cooler in the north Pacific throughout the decade. They are also significantly cooler in the global average and over most land and ocean regions out to several years ahead. However, in the absence of volcanic eruptions, global temperature is predicted to continue to rise, with each year from 2013 onwards having a 50 % chance of exceeding the current observed record. Verification of these forecasts will provide an important opportunity to test the performance of models and our understanding and knowledge of the drivers of climate change.
Resumo:
A simple four-dimensional assimilation technique, called Newtonian relaxation, has been applied to the Hamburg climate model (ECHAM), to enable comparison of model output with observations for short periods of time. The prognostic model variables vorticity, divergence, temperature, and surface pressure have been relaxed toward European Center for Medium-Range Weather Forecasts (ECMWF) global meteorological analyses. Several experiments have been carried out, in which the values of the relaxation coefficients have been varied to find out which values are most usable for our purpose. To be able to use the method for validation of model physics or chemistry, good agreement of the model simulated mass and wind field is required. In addition, the model physics should not be disturbed too strongly by the relaxation forcing itself. Both aspects have been investigated. Good agreement with basic observed quantities, like wind, temperature, and pressure is obtained for most simulations in the extratropics. Derived variables, like precipitation and evaporation, have been compared with ECMWF forecasts and observations. Agreement for these variables is smaller than for the basic observed quantities. Nevertheless, considerable improvement is obtained relative to a control run without assimilation. Differences between tropics and extratropics are smaller than for the basic observed quantities. Results also show that precipitation and evaporation are affected by a sort of continuous spin-up which is introduced by the relaxation: the bias (ECMWF-ECHAM) is increasing with increasing relaxation forcing. In agreement with this result we found that with increasing relaxation forcing the vertical exchange of tracers by turbulent boundary layer mixing and, in a lesser extent, by convection, is reduced.
Resumo:
During a series of 8 measurement campaigns within the SPURT project (2001-2003), vertical profiles of CO and O3 have been obtained at subtropical, middle and high latitudes over western Europe, covering the troposphere and lowermost stratosphere up to ~14 km altitude during all seasons. The seasonal and latitudinal variation of the measured trace gas profiles are compared to simulations with the chemical transport model MATCH. In the troposphere reasonable agreement between observations and model predictions is achieved for CO and O3, in particular at subtropical and mid-latitudes, while the model overestimates (underestimates) CO (O3 in the lowermost stratosphere particularly at high latitudes, indicating too strong simulated bi-directional exchange across the tropopause. By the use of tagged tracers in the model, long-range transport of Asian air masses is identified as the dominant source of CO pollution over Europe in the free troposphere.
Resumo:
The primary role of land surface models embedded in climate models is to partition surface available energy into upwards, radiative, sensible and latent heat fluxes. Partitioning of evapotranspiration, ET, is of fundamental importance: as a major component of the total surface latent heat flux, ET affects the simulated surface water balance, and related energy balance, and consequently the feedbacks with the atmosphere. In this context it is also crucial to credibly represent the CO2 exchange between ecosystems and their environment. In this study, JULES, the land surface model used in UK weather and climate models, has been evaluated for temperate Europe. Compared to eddy covariance flux measurements, the CO2 uptake by the ecosystem is underestimated and the ET overestimated. In addition, the contribution to ET from soil and intercepted water evaporation far outweighs the contribution of plant transpiration. To alleviate these biases, adaptations have been implemented in JULES, based on key literature references. These adaptations have improved the simulation of the spatio-temporal variability of the fluxes and the accuracy of the simulated GPP and ET, including its partitioning. This resulted in a shift of the seasonal soil moisture cycle. These adaptations are expected to increase the fidelity of climate simulations over Europe. Finally, the extreme summer of 2003 was used as evaluation benchmark for the use of the model in climate change studies. The improved model captures the impact of the 2003 drought on the carbon assimilation and the water use efficiency of the plants. It, however, underestimates the 2003 GPP anomalies. The simulations showed that a reduction of evaporation from the interception and soil reservoirs, albeit not of transpiration, largely explained the good correlation between the carbon and the water fluxes anomalies that was observed during 2003. This demonstrates the importance of being able to discriminate the response of individual component of the ET flux to environmental forcing.
Resumo:
The exchange between the open ocean and sub-ice shelf cavities is important to both water mass transformations and ice shelf melting. Here we use a high-resolution (500 m) numerical model to investigate to which degree eddies produced by frontal instability at the edge of a polynya are capable of transporting dense High Salinity Shelf Water (HSSW) underneath an ice shelf. The applied surface buoyancy flux and ice shelf geometry is based on Ronne Ice Shelf in the southern Weddell Sea, an area of intense wintertime sea ice production where a flow of HSSW into the cavity has been observed. Results show that eddies are able to enter the cavity at the southwestern corner of the polynya where an anticyclonic rim current intersects the ice shelf front. The size and time scale of simulated eddies are in agreement with observations close to the Ronne Ice Front. The properties and strength of the inflow are sensitive to the prescribed total ice production, flushing the ice shelf cavity at a rate of 0.2–0.4 × 106 m3 s−1 depending on polynya size and magnitude of surface buoyancy flux. Eddy-driven HSSW transport into the cavity is reduced by about 50% if the model grid resolution is decreased to 2-5 km and eddies are not properly resolved.
The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes
Resumo:
This manuscript describes the energy and water components of a new community land surface model called the Joint UK Land Environment Simulator (JULES). This is developed from the Met Office Surface Exchange Scheme (MOSES). It can be used as a stand alone land surface model driven by observed forcing data, or coupled to an atmospheric global circulation model. The JULES model has been coupled to the Met Office Unified Model (UM) and as such provides a unique opportunity for the research community to contribute their research to improve both world-leading operational weather forecasting and climate change prediction systems. In addition JULES, and its forerunner MOSES, have been the basis for a number of very high-profile papers concerning the land-surface and climate over the last decade. JULES has a modular structure aligned to physical processes, providing the basis for a flexible modelling platform.
Resumo:
Nocturnal cooling of air within a forest canopy and the resulting temperature profile may drive local thermally driven motions, such as drainage flows, which are believed to impact measurements of ecosystem–atmosphere exchange. To model such flows, it is necessary to accurately predict the rate of cooling. Cooling occurs primarily due to radiative heat loss. However, much of the radiative loss occurs at the surface of canopy elements (leaves, branches, and boles of trees), while radiative divergence in the canopy air space is small due to high transmissivity of air. Furthermore, sensible heat exchange between the canopy elements and the air space is slow relative to radiative fluxes. Therefore, canopy elements initially cool much more quickly than the canopy air space after the switch from radiative gain during the day to radiative loss during the night. Thus in modeling air cooling within a canopy, it is not appropriate to neglect the storage change of heat in the canopy elements or even to assume equal rates of cooling of the canopy air and canopy elements. Here a simple parameterization of radiatively driven cooling of air within the canopy is presented, which accounts implicitly for radiative cooling of the canopy volume, heat storage in the canopy elements, and heat transfer between the canopy elements and the air. Simulations using this parameterization are compared to temperature data from the Morgan–Monroe State Forest (IN, USA) FLUXNET site. While the model does not perfectly reproduce the measured rates of cooling, particularly near the top of the canopy, the simulated cooling rates are of the correct order of magnitude.
Resumo:
We review the decision by the European Commission in the case of the UK Agricultural Registration Exchange. We propose a theoretical model, offering a basis for some of the intuitive arguments used by the Commission on the anti-competitive role of information exchange in the case of price and non price collusion. Market transparency on non price data is shown to be a collusion facilitating device which may achieve stability in otherwise unstable cartels.
Resumo:
A stand-alone sea ice model is tuned and validated using satellite-derived, basinwide observations of sea ice thickness, extent, and velocity from the years 1993 to 2001. This is the first time that basin-scale measurements of sea ice thickness have been used for this purpose. The model is based on the CICE sea ice model code developed at the Los Alamos National Laboratory, with some minor modifications, and forcing consists of 40-yr ECMWF Re-Analysis (ERA-40) and Polar Exchange at the Sea Surface (POLES) data. Three parameters are varied in the tuning process: Ca, the air–ice drag coefficient; P*, the ice strength parameter; and α, the broadband albedo of cold bare ice, with the aim being to determine the subset of this three-dimensional parameter space that gives the best simultaneous agreement with observations with this forcing set. It is found that observations of sea ice extent and velocity alone are not sufficient to unambiguously tune the model, and that sea ice thickness measurements are necessary to locate a unique subset of parameter space in which simultaneous agreement is achieved with all three observational datasets.
Resumo:
Quantile forecasts are central to risk management decisions because of the widespread use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to forecast volatility, and the method of computing quantiles from the volatility forecasts. In this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns of five currencies. The forecasting models that have been used in recent analyses of the predictability of daily realized volatility permit a comparison of the predictive power of different measures of intraday variation and intraday returns in forecasting exchange rate variability. The methods of computing quantile forecasts include making distributional assumptions for future daily returns as well as using the empirical distribution of predicted standardized returns with both rolling and recursive samples. Our main findings are that the Heterogenous Autoregressive model provides more accurate volatility and quantile forecasts for currencies which experience shifts in volatility, such as the Canadian dollar, and that the use of the empirical distribution to calculate quantiles can improve forecasts when there are shifts
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.