997 resultados para MAGNETITE
Resumo:
A paleomagnetic study was made of 12 samples of trachytic basalt from the base of ODP Hole 698A on the Northeast Georgia Rise (southwest Atlantic) and four samples of andesitic basalt and nine samples of volcanic breccia from the base of ODP Hole 703A on the Meteor Rise (southeast Atlantic). The magnetic intensities of the Hole 703A samples are anomalously low, possibly reflecting alteration effects. The mean magnetic intensity of the Hole 698A samples is high, and compatible with the model of Bleil and Petersen (1983) for the variation of magnetic intensity with age in oceanic basalts, involving progressive low-temperature oxidation of titanomagnetite to titanomaghemite for some 20 m.y. followed by inversion to intergrowths of magnetite and other Fe-Ti oxides during the subsequent 100 m.y. These results support the interpretation of the Hole 698A basalts as true oceanic basement of Late Cretaceous age rather than a younger intrusion. Well-defined stable components of magnetization were identified from AF and thermal demagnetization of the Hole 698A basalts, and less well-defined components were identified for the Hole 703A samples. Studies of the magnetic homogeneity of the Hole 698A basalts, involving harmonic analysis of the spinner magnetometer output, indicate the presence of an unevenly distributed low-coercivity component superimposed on the more homogeneous high-coercivity characteristic magnetization. The former component is believed to reside in irregularly distributed multidomain magnetite grains formed along cracks within the basalt, whilst the latter resides in more uniformly distributed finer magnetic grains. The inclination values for the high-coercivity magnetization of five Hole 698A basalt samples form an internally consistent set with a mean value of 59° ± 5°. The corresponding Late Cretaceous paleolatitude of 40° ± 5° is shallower than expected for this site but is broadly compatible with models for the opening of the South Atlantic involving pivoting of South America away from Africa since the Early Cretaceous. The polarity of the stable characteristic magnetization of the Site 698 basalts is normal. This is consistent with their emplacement during the long Campanian to Maestrichtian normal polarity Chron C33N.
Resumo:
Twenty-seven samples from the Leg 83 section of Hole 504B have been investigated using magnetic, optical, and electron optical methods. The primary magnetic mineral to crystallize was titanomagnetite of approximate composition Fe2.4Ti0.6O4 (TM60), but none survives, nor is there evidence of titanomaghemite produced by oxidation of TM60. The average measured magnetic properties can be interpreted in terms of magnetite, Fe3O4, having average grain size of <1 µm and present in average volume concentration of - 0.5%. The intensity of the natural remanent magnetization (NRM) of the rocks could also be accounted for as being a thermoremanence carried by this mineral. Although the heterogeneity of the titanomagnetite grains could be detected optically, the texture of the intergrown phases is poorly developed. In some samples from the massive units of the lower part of the section, trellis patterns were visible. The Fe3O4 present in the intergrowths is too intimately mixed with the other intergrown phases to be revealed by electron microprobe analysis that simply returns the bulk composition of the intergrowth (oxidized TM60). The path by which the mineral assemblage evolved from TM60 to an Fe304-containing intergrowth, under the temperature and pressure conditions obtaining in the Leg 83 section, makes interesting speculation. Deuteric oxidation, maghemitization/inversion, or some hypothetical low-temperature/high-pressure oxidation by a leaching-of-iron process may all play roles.
Resumo:
Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.
Resumo:
Paleomagnetic analysis of sediment samples from Ocean Drilling Program (ODP) Leg 133, Site 820, 10 km from the outer edge of the Great Barrier Reef, is undertaken to investigate the mineral magnetic response to environmental (sea level) changes. Viscous remanent magnetization (VRM) of both multidomain and near-superparamagnetic origin is prevalent and largely obscures the primary remanence, except in isolated high-magnetization zones. The Brunhes/Matuyama boundary cannot be identified, but is expected to be below 120 mbsf. The only evidence that exists for a geomagnetic excursion occurs at about 33 mbsf (-135 k.y.). Only one-half the cores were oriented, and many suffered from internal rotation about the core axis, caused by coring and/or slicing. The decay of magnetic remanence below the surface layer (0-2 mbsf) is attributed to sulfate reduction processes. The magnetic susceptibility (K) record is central for describing and understanding the magnetic properties of the sediments, and their relationship to glacio-eustatic fluctuations in sea level. Three prominent magnetic susceptibility peaks, at about 7, 32, and 64 mbsf, are superimposed on a background of smaller susceptibility oscillations. Fluctuations in susceptibility and remanence in the ôbackgroundö zone are controlled predominantly by variations in the concentration, rather than the composition of ferrimagnetics, with carbonate dilution playing an important role (type-A properties). The sharp susceptibility maxima occur at the start of the marine transgressions following low stands in sea level (high d18O, glacial maxima), and are characterized by a stable single-domain remanence, with a significant contribution from ultra-fine, superparamagnetic grains (type-C properties). During the later marine transgression, the susceptibility gradually returns to low values and the remanence is carried by stable single-domain magnetite (type-B properties). The A, B, and C types of sediment have distinctive ARM/K ratios. Throughout most of the sequence a strong inverse correlation exists between magnetic susceptibility and both CaCO3 and d18O variations. However, in the sharp susceptibility peaks (early transgression), more complex phase relationships are apparent among these parameters. In particular, the K-d18O correlation switches to positive, then reverts to negative during the course of the late transgression, indicating that two distinct mechanisms are responsible for the K-d18O correlation. Lower in the sequence, where sea-level-controlled cycles of upward-coarsening sediments, we find that the initial, mud phase of each cycle has been enriched in high-coercivity magnetic material, which is indicative of more oxic conditions. The main magnetic characteristics of the sediments are thought to reflect sea-level-controlled variations in the sediment source regions and related run-off conditions. Some preliminary evidence is seen that biogenic magnetite may play a significant role in the magnetization of these sediments.
Resumo:
Igneous rocks recovered from Ocean Drilling Program (ODP) Leg 134 Sites 827, 829, and 830 at the toe of the forearc slope of New Hebrides Island Arc were investigated, using petrography, mineral chemistry, major and trace element, and Sr, Nd, and Pb isotopic analyses. Basaltic and andesitic clasts, together with detrital crystals of plagioclase, pyroxenes, and amphiboles embedded in sed-lithic conglomerate or volcanic siltstone and sandstone of Pleistocene age, were recovered from Sites 827 and 830. Petrological features of these lava clasts suggest a provenance from the Western Belt of New Hebrides Island Arc; igneous constituents were incorporated into breccias and sandstones, which were in turn reworked into a second generation breccia. Drilling at Site 829 recovered a variety of igneous rocks including basalts and probably comagmatic dolerites and gabbros, plus rare ultramafic rocks. Geochemical features, including Pb isotopic ratios, of the mafic rocks are intermediate between midocean ridge basalts and island arc tholeiites, and these rocks are interpreted to be backarc basin basalts. No correlates of these mafic rocks are known from Espiritu Santo and Malakula islands, nor do they occur in the Pleistocene volcanic breccias at Sites 827 and 830. However, basalts with very similar trace element and isotopic compositions have been recovered from the northern flank of North d'Entrecasteaux Ridge at Site 828. It is proposed that igneous rocks drilled at Site 829 represent material from the North d'Entrecasteaux Ridge accreted onto the over-riding Pacific Plate during collision. An original depleted mantle harzburgitic composition is inferred for a serpentinite clast recovered at 407 meters below seafloor (mbsf) in Hole 829A. Its provenance is a matter of speculation. It could have been brought up along a deep thrust fault affecting the Pacific Plate at the colliding margin, or analogous to the Site 829 basaltic lavas, it may represent material accreted from the North d'Entrecasteaux Ridge.
Resumo:
Serpentinization of abyssal peridotites is known to produce extremely reducing conditions as a result of dihydrogen (H2,aq) release upon oxidation of ferrous iron in primary phases to ferric iron in secondary minerals by H2O.We have compiled and evaluated thermodynamic data for Fe-Ni-Co-O-S phases and computed phase relations in fO2,g-fS2,g and aH2,aq-aH2S,aq diagrams for temperatures between 150 and 400°C at 50MPa.We use the relations and compositions of Fe-Ni-Co-O-S phases to trace changes in oxygen and sulfur fugacities during progressive serpentinization and steatitization of peridotites from the Mid-Atlantic Ridge in the 15°20'N Fracture Zone area (Ocean Drilling Program Leg 209). Petrographic observations suggest a systematic change from awaruite- magnetite-pentlandite and heazlewoodite-magnetite-pentlandite assemblages forming in the early stages of serpentinization to millerite-pyrite-polydymite-dominated assemblages in steatized rocks. Awaruite is observed in all brucite-bearing partly serpentinized rocks. Apparently, buffering of silica activities to low values by the presence of brucite facilitates the formation of large amounts of hydrogen, which leads to the formation of awaruite. Associated with the prominent desulfurization of pentlandite, sulfide is removed from the rock during the initial stage of serpentinization. In contrast, steatitization indicates increased silica activities and that highsulfur-fugacity sulfides, such as polydymite and pyrite-vaesite solid solution, form as the reducing capacity of the peridotite is exhausted and H2 activities drop. Under these conditions, sulfides will not desulfurize but precipitate and the sulfur content of the rock increases. The co-evolution of fO2,g-fS2,g in the system follows an isopotential of H2S,aq, indicating that H2S in vent fluids is buffered. In contrast, H2 in vent fluids is not buffered by Fe-Ni-Co-O-S phases, which merely monitor the evolution of H2 activities in the fluids in the course of progressive rock alteration.The co-occurrence of pentlandite- awaruite-magnetite indicates H2,aq activities in the interacting fluids near the stability limit of water. The presence of a hydrogen gas phase would add to the catalyzing capacity of awaruite and would facilitate the abiotic formation of organic compounds.
Resumo:
We present sediment magnetic and chemical analysis of cyclic ocean sediments of the upwelling region of the Lower Congo Basin (equatorial Atlantic). We investigated two >100-k.y. intervals from Ocean Drilling Program Site 1075 to analyze the hysteresis properties, sources of magnetic susceptibility, anhysteretic remanent magnetizations, thermomagnetic behavior, and element concentrations of Fe, Ca, Ti, Mn, and K using an X-ray fluorescence (XRF) core scanner. The upper interval was sampled between 14 and 32 meters composite depth (mcd; 0.09-0.21 Ma) and the lower between 141 and 163 mcd (1.31-1.54 Ma) at a resolution of 20 cm, which represents a temporal resolution of 2.0 and 1.3 k.y., respectively. XRF core-scanner data were acquired at 5-cm intervals. The measurements show that ferri(o)magnetic minerals have no significant influence on the cyclicity of the magnetic susceptibility, which is dominated by paramagnetic and diamagnetic minerals and reflects changes of sediment input from the Congo River. The Fe, Ti, K, and Mn concentrations covary with the magnetic susceptibility where high concentrations of these elements correlate with intervals of high susceptibility and low concentrations with intervals of low susceptibility. The Ca counts correlate well with the calcium carbonate concentration but do not show the same cyclicity as the other elements or the susceptibility. With the exception of the Ca concentration, which is significantly higher in the upper interval, and the magnetic grain size, which indicates that less fine grained magnetite is present in the lower interval, no significant differences in the properties of the upper and the lower intervals were detected.
Resumo:
During ODP Leg 107, two holes were drilled in the basement of Vavilov Basin, a central oceanic area of the Tyrrhenian sea. Hole 655B is located near the Gortani ridge in off-axis position at the western rim of the basin; Hole 651A is located on a basement swell at the axis of the basin. This paper deals with mineral chemistry, major and trace element geochemistry, and petrogenesis of the basalts recovered in the two holes. The mineralogy of the basalts is broadly homogeneous, but all of them have suffered important seawater alteration. Their major-element compositions are similar to both normal-mid-ocean-ridge-basalts (N-MORB) and back-arc-basalts (BAB) except for Na2O contents (BAB-like), and K2O which is somewhat enriched in upper unit of Hole 651 A. Their affinity with N-MORB and BAB is confirmed by using immobile trace elements such as Zr, Y, and Nb. However, basalts from the two sites present contrasting geochemical characteristics on spidergrams using incompatible elements. Hole 655B basalts are homogeneous enriched tholeiites, similar to those from DSDP Hole 373 (located on the opposite side of the basin near the eastern rim), and show affinities with enriched MORB (E-MORB). At Hole 651 A, the two basalt units are chemically distinct. One sample recovered in lower unit is rather similar to those from Hole 655B, but basalts from upper unit display calc-alkaline characteristic evidenced by the increase of light-ion-lithophile-element (LILE)/high-field-strength-element (HFSE) ratio, and appearance of a negative Nb-anomaly, making them comparable with orogenic lavas from the adjacent Eolian arc. The observed chemical compositions of the basalts are consistent with a derivation of the magmas from a N-MORB type source progressively contaminated by LILE-enriched fluids released from dehydration of the bordering subducted plate. Implications for evolution of the Tyrrhenian basin are tentatively proposed taking into consideration geochemical and chronological relationships between basalts from Leg 107 Holes 655B and 651 A, together with data from Leg 42 Site 373 and Vavilov Seamount. These data illustrate back-arc spreading in ensialic basin closely associated with the maturation of the adjacent subduction, followed by the growth of late off-axis central volcano, whereas the active subduction retreats southeastward.
Resumo:
New data on microstructures and mineral and chemical compositions of ferromanganese crusts sampled from the western slope of the Kuril Island Arc in the Sea of Okhotsk during cruises of R/V Vulkanolog are discussed. The study of the crusts using analytical electron microscopy methods revealed that their manganese phase is represented by vernadite, Fe-vernadite, todorokite, asbolane, and asbolane-buserite, while iron phase consists of hematite, hydrohematite, ferroxyhite, and magnetite. Lithic mineral assemblage includes apatite, quartz, epidote, and montmorillonite. According to chemical analysis most of the crusts contain significant part of volcanogenic and hydrothermal material. It is evident from elevated values of Mn/Fe and (Mn+Fe)/Ti ratios, low concentrations of some trace elements, and positive Eu anomaly.
Resumo:
Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.