332 resultados para MACROALGAE
Resumo:
To determine good ecological status and conservation of the Sub-Marine area of the Bay of Biscay, the implementation of a new rocky intertidal habitats monitoring is needed. A protocol has been adapted from the Brittany protocol for the water body FRFC11 "Basque coast" for the two indicators "intertidal macroalgae" and "subtidal macroalgae" under the Water Framework Directive to qualify the ecological. However no protocol has been validated for fauna in front of meridional characters of the benthic communities. Investigations carried out on macroalgae communities on intertidal area in WFD framework, since 2008, constitute an important working basis. This is the aim of the Bigorno project (Intertidal Biodiversity of the south of the Bay of Biscay and Observation for New search and Monitoring for decision support), financed by the Agency of Marine Protected Areas and the Departmental Council. To implement knowledge, a sampling protocol has been used in 2015 on the boulder fields of Guéthary. This site is part of Natura 2000 area "rocky Basque coast and offshore extension "It constitutes also a Znieff site and restricted fishing area. The sampling strategy considers the heterogeneity of substrates and the presence of intertidal microhabitats. Two main habitats are present: "mediolittoral rock in exposed area habitat" and "boulder fields". Habitat "intertidal pools and permanent ponds" is also present but, it is not investigated. Sampling effort is of 353 quadrats of 0.1 m², drawn randomly according to a spatially stratified sampling plan, defined by habitat and algal belts. Taxa identification and enumeration are done on each quadrat. The objective of this work is to expose results from data collected during 2015 sampling program. The importance of characterizing benthic fauna communities spatial distribution belonging to the Basque coast according to algal belts defines during the WDF survey was highlighted. Concurrently, indicators of biodiversity were studied.
Resumo:
Within the European water framework directive (WFD), the status assessment of littoral waters is based both on the chemical quality and on the ecological quality of each water body. Quality elements enabling to assess the ecological status of a water body are, among other things, biological quality elements (phytoplankton, macroalgae, angiosperms, benthic invertebrates, fish), for each of which the member states have developed quantitative indicators. This document is one of the deliverables of a multi-annual study intended to characterize the sensitivity of these biological indicators towards the various anthropogenic pressures exerted on the French Atlantic and Channel coast: ultimately, the goal is to establish a quantitative and predictive relationship, statistically robust, between the WFD indicators used along the French channel and Atlantic coastline, and various anthropogenic pressures acting on these coasts. The aim of the WFD is indeed to restore or maintain a good chemical and biological quality of coastal waters, and thus to limit the impact of human activities potentially responsible for the degradation of ecosystems. This understanding of the linkages and interactions existing between anthropogenic pressures and ecological status of water bodies is therefore essential to identify priorities for action (challenges, substances ...), prioritize actions to implement within restoration programs (technical, fiscal, financial), but also to be able to communicate constructively and persuasively in talks between managers and the various stakeholders of coastal regions. Using the DPSIR methodology, this literature analysis has permitted to identify, for each WFD biological quality element (except fish), which pressures (or pressure types) are potentially relevant in the light of their impact on the indicators of the ecological status of water bodies. Some metrics and indicators of anthropogenic pressures used in the literature to characterize the sensitivity of the biological quality elements, within quantitative approaches, were also identified. It is also clear from this review that the biological quality elements can be particularly sensitive to intrinsic environmental conditions, and therefore to certain changes related to natural phenomena occurring at large scales (e.g. climate change, paroxysmal climate episode...). Therefore, when one is interested in the sensitivity of biological indicators to different anthropogenic pressures, two factors can complicate the analysis and are likely to weaken the resulting statistical relationships: on the one hand, the variability of biological responses depending on the natural context and, on the other hand, interactions (so called synergistic effects) between different types of anthropogenic pressures and the alterations they can generate.
Resumo:
Within the European water framework directive (WFD), the status assessment of littoral waters is based both on the chemical quality and on the ecological quality of each water body. Quality elements enabling to assess the ecological status of a water body are, among other things, biological quality elements (phytoplankton, macroalgae, angiosperms, benthic invertebrates, fish), for each of which member states have developed quantitative indicators. This document compiles three deliverables of a multi-annual study intended to characterize the sensitivity of these biological indicators regarding the various anthropogenic pressures exerted on the French Atlantic and Channel coast: ultimately, the goal is to establish a quantitative and predictive relationship, statistically robust, between the WFD indicators used along the French channel and Atlantic coastline, and various anthropogenic pressures acting on these coasts. These three deliverables are the following : - The reports of various interviews performed with French national referents for the biological quality elements used within the littoral part of the WFD in Channel and Atlantic (phytoplankton, subtidal and intertidal macroalgae, opportunistic blooming macroalgae, angiosperms and benthic invertebrates). These interviews aimed to specify, for each metric constitutive of the BQE indicator (if multi-metric), the "relevant" pressures, as well as the trend of this impact, - Sheets describing the "pressure" and "environment" data available, in order to characterize spatially and quantitatively these "relevant" anthropogenic pressures acting on French Channel and Atlantic coast, - A progress report dealing with the development of a database tool, for archiving quantitative data characterizing "relevant" littoral anthropogenic pressures.
Resumo:
The Water Framework Directive uses the “One-out, all-out” (OAOO) principle in assessing water bodies (i.e. the worst status of the elements used in the assessment determines the final status of the water body). Combination of multiple parameters within a biological quality element (BQEs) can be done in different ways. This study analysed several aggregation conditions within the BQE "Flora other than phytoplankton" (intertidal macroalgae, subtidal macroalgae, eelgrass beds and opportunistic blooms) using monitoring data collected along the Channel and Atlantic coastline. Four aggregation criteria were tested on two sets of data collected between 2004 and 2014: OOAO, average, intermediate method between OOAO and average and a method taking into account an uncertainty value at the threshold "Good/Moderate." Based on available data, the intermediate method appears the most qualified method using first an averaging approach between the natural habitat elements and then applying the OAOO between this mean and the opportunistic blooms, characteristic of an eutrophic environment. Expert judment might be used to ensure in the overall interpretation of results at waterbody level and in the classification outcomes.
Resumo:
Hydrodynamism is an environmental stressor on marine communities with effects on populations of intertidal organisms. Microphrys bicornutus is a crab species associated with secondary substrates on rocky shores and little is known about its population dynamics and its relation to the shore hydrodynamics. The aim of this study is to describe the population structure of Microphrys bicornutus on intertidal rocky shores from the north coast of the São Paulo State, Brazil, and the influence of wave exposure on the density of this decorator crab. There was a greater density of M. bicornutus on sheltered than on exposed rocky shores, which is probably due to the hydrodynamic influence on M. bicornutus populations on rocky shores: directly ( by the physical stress caused by wave impact) and indirectly ( by determining the dominance of the secondary substrate) acting on the density of these crabs. Our results also suggest a vertical distribution of juveniles and adults, where the juveniles might be more abundant on the infralittoral fringe and, thus, more influenced by hydrodynamism than adults in the infralittoral.
Resumo:
Sedentary consumers play an important role on populations of prey and, hence, their patterns of abundance, distribution and coexistence on shores are important to evaluate their potential influence on ecosystem dynamics. Here, we aimed to describe their spatio-temporal distribution and abundance in relation to wave exposure in the intertidal rocky shores of the south-west Atlantic to provide a basis for further understanding of ecological processes in this system. The abundance and composition of the functional groups of sessile organisms and sedentary consumers were taken by sampling the intertidal of sheltered and moderately exposed shores during a period of one year. The sublittoral fringe of sheltered areas was dominated by macroalgae, while the low midlittoral was dominated by bare rock and barnacles. In contrast, filter-feeding animals prevailed at exposed shores, probably explaining the higher abundance of the predator Stramonita haemastoma at these locations. Limpets were more abundant at the midlittoral zone of all shores while sea urchins were exclusively found at the sublittoral fringe of moderately exposed shores, therefore, adding grazing pressure on these areas. The results showed patterns of coexistence, distribution and abundance of those organisms in this subtropical area, presumably as a result of wave action, competition and prey availability. It also brought insights on the influence of top-down and bottom-up processes in this area.
Resumo:
This study evaluates the influence of depth and environmental parameters on the development of Gracilaria birdiae Plastino & Oliveira (Gracilariaceae Rhodophyta) in an organic shrimp pound (Litopenaeus vannamei) under euthrophical conditions. PVC structures (module) witch four ropes laden with 150 g of macroalgae each, were kept during 35 days at three different depths (surface, 10 and 20 cm depth). Wet biomass weighing and environmental parameters (temperature, salinity, turbidity, pH, transparence, precipitation, evaporation, insolation, accumulated solar radiation, nitrite, nitrate, ammonium and orthophosphate) were measured weekly. At all three proposed depths, the macroalgae displayed a higher biomass at the end of experiment than at the initial inoculations. The module kept at a 10 cm depth presented the greatest average biomass (186,3), followed by that kept at 20 cm (180,4 g) and the surface module (169,9 g). Biomass variations showed algae to suffer the direct effects of depths. Biomass loss was associated with the factors that influence light penetration, such as sediment deposits above the thallus, rate of evaporation and precipitation. The smallest loses occurred in the algae kept on surface (0,16%), followed by the algae kept at 20 cm (0,20%) and 10 cm (0,22%). The specific growth rate (SGR) of G. birdiae showed no significant difference between the three depths nor the sample periods. Nevertheless, the modules kept at 10 and 20 cm depths presented similar growth evolution, both growing 0,38%·per day-1, while the module kept on surface had an average SGR of 0,36%·day-1. The models related to growth rate demonstrated temperature, salinity, pH, orthophosphate, ammonium, precipitation and turbidity as the principal environmental parameters influencing the development of G. birdiae
Resumo:
Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture
Resumo:
Despite the importance of coral reefs to humanity, these environments have been threatened throughout the world. Several factors contribute to the degradation of these ecosystems. The Maracajaú Reef Complex, in Rio Grande do Norte state is part of the Coral Reefs Environment Preservation Area in northeastern Brazil. This area has been receiving an increasing influx of tourism and the integrity of the local reefs is a matter of concern. In this study, the reef macroalgae communities were studied and compared within two areas distinguished by the presence or absence of tourism activities. Two sample sites were chosen: the first one, where diving activities are intense; and the other, where these practices do not occur. Samples were collected at both sites within a quadrate of 625 cm2 of area randomly thrown 5 times along a 10 meters transect line. Richness, Shannon-Hill diversity and Simpson dominance indices were determined based on biomass data. Similarity between sites was analyzed with Bray-Curtis similarity and distance index. Fifty-eight macroalgae species were observed, including 7 Chlorophyta, 13 Phaeophyta and 38 Rhodophyta. In the non-disturbed site, 49 species were found, while at the disturbed site, there were 42 species. Dictyotaceae and Corallinaceae were the most representative families at the non-disturbed site, and Rhodomelaceae and Dictyotaceae at the disturbed site. The non-disturbed site presented a higher biomass and the greatest richness and diversity indices. In the disturbed site the dominance index was greater and Caulerpa racemosa was the dominant species. The dendogram based on similarity index showed two major clusters, and an isolated element at the center that corresponds to a sample from the disturbed site. In the first cluster, samples from the non-impacted site were predominant and fleshy brown algae were more conspicuous. The second cluster was composed primarily of samples from the impacted site, where C. racemosa and red filamentous and erect calcareous algae associations (turf forming) were observed covering large extensions. These associations are represented by groups of algae adapted to environments where disturbances are frequent. They can grow rapidly on substrate where benthic community was removed and do not allow the establishment of other species. The results of the present study show that tourism activity is an impacting factor that has been causing shifts in macroalgae communities in the Maracajaú Reef Complex
Resumo:
The objective of this study was to examine the growth of Gracilaria cervicornis cultured in a shrimp (Litopenaeus vannamei) pond and to determine the absorption efficiency and the kinetics parameters (Vmax, Ks e Vmax:Ks) of this macroalgae for the nutrients N-NO3-, N-NH4+ and P-PO4-3, aiming at its use as bioremediatory of eutrophicated environments. For this study, two experiments (field and laboratory) were developed. In the field study, the seaweed was examined in relation to the growth and the biomass. In the laboratory experiment, the absorption efficiency of G. cervicornis was measured through the monitoring of the concentration of the three nutrients (N-NO3-, N-NH4+ e P-PO4-3) during 5 hours and the kinetic parameters were determined through the formula of Michaelis-Menten. The results obtained in this study demonstrated that G. cervicornis benefited from the available nutrients in the pond, increasing 52.4% of its biomass value after 30 days of culture. It was evidenced that the variability of the biomass could be explained through the salinity, availability of light (transparency and solid particle in suspension) and concentration of N-NO3- in the environment. In the laboratory experiment, the highest absorption efficiency was found in the treatments with low concentration (5 µmol.L-1), being evidenced a reduction of up to 85,3%, 97,5% and 81,2% of N-NH4+, N-NO3- and P-PO43-, respectively. Regarding the kinetic parameters, G. cervicornis presented better ability in absorbing N-NH4+ in high concentrations (Vmax = 158,5 µmol g-1 dry wt h-1) and P-PO43- in low concentrations (Ks = 5 µmol.L-1 e Vmax:Ks = 10,3). The results of this study show that G. cervicornis could be cultivated in shrimp ponds, presents a good capacity of absorption for the tested nutrients and is a promising candidate for biorremediation in shrimp pond effluent
Resumo:
Shallow seagrass ecosystems frequently experience physical disturbance from vessel groundings. Specific restoration methods that modify physical, chemical, and biological aspects of disturbances are used to accelerate recovery. This study evaluated loss and recovery of ecosystem structure in disturbed seagrass meadows through plant and soil properties used as proxies for primary and secondary production, habitat quality, benthic metabolism, remineralization, and nutrient storage and exchange. The efficacy of common seagrass restoration techniques in accelerating recovery was also assessed. Beyond removal of macrophyte biomass, disturbance to seagrass sediments resulted in loss of organic matter and stored nutrients, and altered microbial and infaunal communities. Evidence of the effectiveness of restoration actions was variable. Fill placement prevented additional erosion, but the resulting sediment matrix had different physical properties, low organic matter content and nutrient pools, reduced benthic metabolism, and less primary and secondary production relative to the undisturbed ecosystem. Fertilization was effective in increasing nitrogen and phosphorus availability in the sediments, but concurrent enhancement of seagrass production was not detected. Seagrass herbivores removed substantial seagrass biomass via direct grazing, suggesting that leaf loss to seagrass herbivores is a spatially variable but critically important determinant of seagrass transplanting success. Convergence of plant and sediment response variables with levels in undisturbed seagrass meadows was not detected via natural recovery of disturbed sites, or through filling and fertilizing restoration sites. However, several indicators of ecosystem development related to primary production and nutrient accumulation suggest that early stages of ecosystem development have begun at these sites. This research suggests that vessel grounding disturbances in seagrass ecosystems create more complex and persistent resource losses than previously understood by resource managers. While the mechanics of implementing common seagrass restoration actions have been successfully developed by the restoration community, expectations of consistent or rapid recovery trajectories following restoration remain elusive.
Resumo:
The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in terrestrial, freshwater, and marine ecosystems around the world. Understanding the consequences of these declines has been hampered by a lack of studies in relatively pristine systems. To fill this gap, I investigated the dynamics of the relatively pristine seagrass ecosystem of Shark Bay, Australia. I began by examining the seagrass species distributions, stoichiometry, and patterns of nutrient limitation across the whole of Shark Bay. Large areas were N-limited, P-limited, or limited by factors other than nutrients. Phosphorus-limitation was centered in areas of restricted water exchange with the ocean. Nutrient content of seagrasses varied seasonally, but the strength of seasonal responses were species-specific. Using a cafeteria-style experiment, I found that fast-growing seagrass species, which had higher nutrient content experienced higher rates of herbivory than slow-growing species that are dominant in the bay but have low nutrient content. Although removal rates correlated well with nutrient content at a broad scale, within fast-growing species removal rates were not closely tied to N or P content. Using a combination of stable isotope analysis and animal borne video, I found that green turtles (Chelonia mydas) – one of the most abundant large-bodied herbivores in Shark Bay – appear to assimilate little energy from seagrasses at the population level. There was, however, evidence of individual specialization in turtle diets with some individuals foraging largely on seagrasses and others feeding primarily on macroalgae and gelatinous macroplankton. Finally, I used exclusion cages, to examine whether predation-sensitive habitat shifts by megagrazers (green turtles, dugongs) transmitted a behavior-mediated trophic cascade (BMTC) between sharks and seagrasses. In general, data were consistent with predictions of a behavior-mediated trophic cascade. Megaherbivore impacts on seagrasses were large only in the microhabitat where megaherbivores congregate to reduce predation risk. My study highlights the importance of large herbivores in structuring seagrass communities and, more generally, suggests that roving top predators likely are important in structuring communities - and possibly ecosystems - through non-consumptive pathways.
Resumo:
The Peruvian coast is one the best examples of cross-ecosystem food web exchanges, in which resources from one of the richest marine ecosystems subsidize consumers in one of the driest deserts on Earth. Marine subsidies are resources that originate in the marine ecosystem, and that contribute to increase the density of consumers in the recipient ecosystem. I examined the effects of marine subsidies on animal populations in the Peruvian coastal desert. I combined several approaches to study the linkages between marine resources and terrestrial consumers, such as surveying the spatial distribution and estimating the relative abundance of terrestrial consumers, studying the diet of geckos and lizards through stomach content analyses, and examining the desert food web with carbon and nitrogen stable isotope analyses. I found that the distribution and diet of desert consumers were tightly coupled to the availability of marine subsidies. I revealed linkages along two pathways of nutrient fluxes: tidal action that washes ashore macroalgae and cadavers of marine organisms, and animal transport in places where pinnipeds and seabirds congregate for reproduction. In the first pathway, intertidal algivivores made marine resources available to terrestrial consumers by moving between the intertidal and supratidal zone. The relative contribution of terrestrial and algal carbon sources varied among terrestrial consumers, because scorpions assimilated a lower proportion of energy from macroalgae than did geckos and solifuges. In the second pathway, I found that pinniped colonies influenced the diet of desert consumers, and contributed to support large populations of lizards and geckos. By combining field observations, and stomach and stable isotope analyses, I constructed a simplified food web for a large sea lion colony, showing the number of trophic levels that originate from pinniped-derived nutrients. My study demonstrates the enormous importance of marine resources for the diet of desert consumers. The near absence of rainfall along the Peruvian coast promotes an extreme dependence of terrestrial consumers on marine resources, and causes permanent food web effects that are affected by temporal variability in marine productivity, rather then temporal patterns of desert plant growth.
Resumo:
The study evaluated the effects of herbivory pressure, nutrient availability and potential propagule supply on recruitment and succession of coral reef macroalgal communities. Recruitment and succession tiles were placed in a nutrient-herbivory factorial experiment and macroalgal abundances were evaluated through time. Proportional abundances of macroalgal form-functional groups on recruitment and succession tiles were similar to field established communities within treatments, evidencing possible effects of adult macroalgae as propagule supply. Macroalgal abundance of recruitment tiles increased with nutrient loading and herbivory reduction combined whereas on succession tiles nutrient loading increased abundance of articulated-calcareous only when herbivores were excluded. Macroalgal field established communities were only affected by herbivory reduction.
Resumo:
Trophic downgrading of ecosystems necessitates a functional understanding of trophic cascades. Identifying the presence of cascades, and the mechanisms through which they occur, is particularly important for seagrass meadows, which are among the most threatened ecosystems on Earth. Shark Bay, Western Australia provides a model system to investigate the potential importance of top-down effects in a relatively pristine seagrass ecosystem. The role of megagrazers in the Shark Bay system has been previously investigated, but the role of macrograzers (i.e., teleosts), and their importance relative to megagrazers, remains unknown. The objective of my dissertation was to elucidate the importance of teleost macrograzers in transmitting top-down effects in seagrass ecosystems. Seagrasses and macroalgae were the main food of the abundant teleost Pelates octolineatus, but stable isotopic values suggested that algae may contribute a larger portion of assimilated food than suggested by gut contents. Pelates octolineatus is at risk from numerous predators, with pied cormorants (Phalacrocorax varius) taking the majority of tethered P. octolineatus. Using a combination of fish trapping and unbaited underwater video surveillance, I found that the relative abundance of P. octolineatus was greater in interior areas of seagrass banks during the cold season, and that the mean length of P. octolineatus was greater in these areas compared to along edges of banks. Finally, I used seagrass transplants and exclosure experiments to determine the relative effect of megagrazers and macrograzers on the establishment and persistence of three species of seagrasses in interior microhabitats. Teleost grazing had the largest impact on seagrass species with the highest nutrient content, and these impacts were primarily observed during the warm season. My findings are consistent with predictions of a behaviorally-mediated trophic cascade initiated by tiger sharks (Galeocerdo cuvier) and transmitted through herbivorous fishes and their predators.