338 resultados para Lubrication.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent developments in aerostatic thrust bearings have included: (a) the porous aerostatic thrust bearing containing a porous pad and (b) the inherently compensated compliant surface aerostatic thrust bearing containing a thin elastomer layer. Both these developments have been reported to improve the bearing load capacity compared to conventional aerostatic thrust bearings with rigid surfaces. This development is carried one stage further in a porous and compliant aerostatic thrust bearing incorporating both a porous pad and an opposing compliant surface. The thin elastomer layer forming the compliant surface is bonded to a rigid backing and is of a soft rubber like material. Such a bearing is studied experimentally and theoretically under steady state operating conditions. A mathematical model is presented to predict the bearing performance. In this model is a simplified solution to the elasticity equations for deflections of the compliant surface. Account is also taken of deflections in the porous pad due to the pressure difference across its thickness. The lubrication equations for flow in the porous pad and bearing clearance are solved by numerical finite difference methods. An iteration procedure is used to couple deflections of the compliant surface and porous pad with solutions to the lubrication equations. Comparisons between experimental results and theoretically predicted bearing performance are in good agreement. However these results show that the porous and compliant aerostatic thrust bearing performance is lower than that of a porous aerostatic thrust bearing with a rigid surface in place of the compliant surface. This discovery is accounted to the recess formed in the bearing clearance by deflections of the compliant surface and its effect on flow through the porous pad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deposition and properties of electroless nickel composite coatings containing graphite, PTFE and chromium were investigated. Solutions were developed for the codeposition of graphite and chromium with electroless nickel. Solutions for the deposition of graphite contained heavy metal ions for stability, with non-ionic and anionic surfactants to provide wetting and dispersion of the particles. Stability for the codeposition of chromium particles was achieved by oxidation of the chromium. Thin oxide layers of 200 nm thick prevented initiation of the electroless reaction onto the chromium. A mechanism for the formation of electroless composite coatings was considered based on the physical adsorption of particles and as a function of the adsorption of charged surfactants and metal cations from solution. The influence of variables such as particle concentration in solution, particle size, temperature, pH, and agitation on the volume percentage of particles codeposited was studied. The volume percentage of graphite codeposited was found to increase with concentration in solution and playing rate. An increase in particle size and agitation reduced the volume percentage codeposited. The hardness of nickel-graphite deposits was found to decrease with graphite content in the as-deposited and heat treated condition. The frictional and wear properties of electroless nickel-graphite were studied and compared to those of electroless nickel-PTFE. The self-lubricating nature of both coatings was found to be dependent on the ratio of coated area to uncoated area, the size and content of lubricating material in the deposit, and the load between contacting surfaces. The mechanism of self-lubrication was considered, concluding that graphite only produced an initial lubricating surface due to the orientation of flakes, unlike PTFE, which produced true self-lubrication throughout the coating life. Heat treatment of electroless nickel chromium deposits at 850oC for 8 and 16 hours produced nickel-iron-chromium alloy deposits with a phosphorus rich surface of high hardness. Coefficients of friction and wear rates were intially moderate for the phosphorus rich layer but increased for the nickel-iron-chromium region of the coating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of cobalt molybdenum and cobalt tungsten brush plating electrolytes is described. Their optimum compositions and operating conditions for commercial applications have been determined. The effects of composition, pH, applied voltage, stylus speed and pressure upon deposit composition and efficiency have been investigated. Transmission and Scanning Electron Microscopy have been employed to study the cobalt alloy deposits produced. Evaluation of the wear resistant properties of the cobalt alloys developed in this work was carried out in the laboratory using a pin and disc technique and a simulated hot forging test, and by industrial trials involving the "on site" plating of hot forging dies and cold pressing tools. It was concluded that the electrolytes developed in tl1is work enabled cobalt alloys containing 6% Mo or 8% W to be deposited at 17-20V. Brush plated cobalt deposits possessed a mixed CPU and FCC crystallographic structure at room temperature. The application of 13µm of either of the cobalt alloys resulted in improved wear performance in both pin and disc and simulated hot forging tests. The results of the industrial trials indicated that by the use of these alloys, the life of hot forging dies may be increased by 20-100%. A commercial forging organisation is using electrolytes developed in this work to coat dies prior to forging nimonic alloys. Reductions in forging temperature and improved forging qualities have been reported. Cold pressing tools coated with the alloys showed a reduced tendency to "pick-up" and scoring of the pressed panels. Reports of a reduced need for lubrication of panels before pressing have also been received.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluids used in hydraulic systems inevitably contain large numbers of small, solid particles, a phenomenon known as 'fluid contamination'. Particles enter a hydraulic system from the environment, and are generated within it by processes of wear. At the same time, particles are removed from the system fluid by sedimentation and in hydraulic filters. This thesis considers the problems caused by fluid contamination, as they affect a manufacturer of axial piston pumps. The specific project aim was to investigate methods of predicting or determining the effects of fluid contamination on this type of pump. The thesis starts with a theoretical analysis of the contaminated lubrication of a slipper-pad bearing. Statistical methods are used to develop a model of the blocking, by particles, of the control capillaries used in such bearings. The results obtained are compared to published, experimental data. Poor correlation between theory and practice suggests that more research is required in this area before such theoretical analysis can be used in industry. Accelerated wear tests have been developed in the U.S.A. in an attempt to predict pump life when operating on contaminated fluids. An analysis of such tests shows that reliability data can only be obtained from extensive test programmes. The value of contamination testing is suggested to be in determining failure modes, and in identifying those pump components which are susceptible to the effects of contamination. A suitable test is described, and the results of a series of tests on axial piston pumps are presented and discussed. The thesis concludes that pump reliability data can only be obtained from field experience. The level of confidence which can be placed in results from normal laboratory testing is shown to be too low for the data to be of real value. Recommendations are therefore given for the ways in which service data should be collected and analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose - To investigate the ability of pharmacy staff in the United Kingdom (UK) to diagnose and treat dry eye. Methods - A mystery shopper technique to simulate a patient with presumed dry eye was used in 50 pharmacy practices in major towns and cities across the UK. Pharmacies were unaware of their involvement in the study. With the exception of a predetermined opening statement to initiate the consultation, no further information was volunteered. Questions asked, diagnoses given, management strategy advised and staff type was recorded immediately after the consultation. Results - The mean number of questions was 4.5 (SD 1.7; range 1–10). The most common question was the duration of symptoms (56%) and the least common was whether the patient had a history of headaches (2%). All pharmacy staff gave a diagnosis, but the majority were incorrect (58%), with only 42% correctly identifying dry eye. Treatment was advised by 92% of pharmacy staff, with the remaining 8% advising referral directly to the patient's GP or optometrist. Dry eye treatments involved topical ocular lubrication via eye drops (90%) and lipid based sprays (10%). However, only 10% gave administration advice, 10% gave dosage advice, 9% asked about contact lens wear, and none offered follow up although 15% also advised GP or optometrist referral. Conclusions - There is a need for improved ophthalmological training amongst pharmacists and pharmacy staff and establishment of cross referral relationships between pharmacies and optometry practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipids play a vital role in the body at many interfaces. Examples include the lubrication of articulating joints by synovial fluid, the coating of the lung by pulmonary surfactant and the functions of the tear film in the protection of the anterior eye. The role of the lipids is similar at each site - acting as boundary lubricants and reducing surface and interfacial tension. This review focuses on how and why contact lens wear can disrupt the normal function of lipids within the tear film and explains how the otherwise advantageous presence and function of tear lipids can become disadvantageous, causing problems for the wearer. Because the contact lens is some ten times thicker than the tear film, lipids deposited on the anterior surface become immobilised, reducing lipid turnover and thus leading to prolonged exposure to oxygen and light with consequent generation of degradation products. These degraded lipids reduce lens wettability and have additionally been linked to problems of contact lens discomfort and intolerance. Lipid problems are influenced by the thickness of the lens, the material, surface modification, mode of wear and ultimately the subject. The most influential of these variables is frequently the subject. © 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotribology is essentially the study of friction, lubrication and wear in biological systems. The area has been widely studied in relation to the behaviour of synovial joints and the design and behaviour of hip joint prostheses, but only in the last decade have serious studies been extended to the eye. In the ocular environment - as distinct from articular joints - wear is not a major factor. Both lubrication and friction are extremely important, however; this is particularly the case in the presence of the contact lens, which is a medical device important not only in vision correction but also as a therapeutic bandage for the compromised cornea. This chapter describes the difficulty in replicating experimental conditions that accurately reflect the complex nature of the ocular environment together with the factors such as load and rate of travel of the eyelid, which is the principal moving surface in the eye. Results obtained across a range of laboratories are compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing environmental awareness, maximizing biodegradability and minimizing ecotoxicity is the main driving force for new technological developments. Thus, can be developed new biodegradable lubricants for use in environmentally sensitive areas. The aim of this study was to obtain new bio-lubricants from passion fruit (Passiflora edulis Sims f. flavicarpa Degener) and moringa (Moringa oleifera Lamarck) epoxidized oils and develop a new additive package using experimental design for their use as a hydraulic fluid. In the first stage of this work was performed the optimization of the epoxidation process of the oils using fractional experimental design 24-1 , varying the temperature, reaction time, ratio of formic acid and hydrogen peroxide. In the second step was investigated the selectivity, thermodynamics and kinetics of the reaction for obtaining the two epoxides at 30, 50 and 70 °C. The result of the experimental design confirmed that the epoxidation of passion fruit oil requires 2 hours of reaction, 50 °C and a ratio H2O2/C=C/HCOOH (1:1:1). For moringa oil were required 2 hours reaction, 50 °C and a ratio of H2O2/C=C/HCOOH (1:1:1.5). The results of the final conversions were equal to 83.09% (± 0.3) for passion fruit oil epoxide and 91.02 (±0,4) for moringa oil epoxide. Following was made the 23 factorial design to evaluate which are the best concentrations of corrosion inhibitor and anti-wear (IC), antioxidant (BHA) and extreme pressure (EP) additives. The bio-lubricants obtained in this step were characterized according to DIN 51524 (Part 2 HLP) and DIN 51517 (Part 3 CLP) standards. The epoxidation process of the oils was able to improve the oxidative stability and reduce the total acid number, when compared to the in natura oils. Moreover, the epoxidized oils best solubilized additives, resulting in increased performance as a lubricant. In terms of physicochemical performance, the best lubricant fluid was the epoxidized moringa oil with additives (EMO-ADI), followed by the epoxidized passion fruit oil with additives (EPF-ADI) and, finally, the passion fruit in natura oil without additives (PFO). Lastly, was made the investigation of the tribological behavior under conditions of boundary lubrication for these lubricants. The tribological performance of the developed lubricants was analyzed on a HFRR equipment (High Frequency Reciprocating Rig) and the coefficient of friction, which occurs during the contact and the formation of the lubricating film, was measured. The wear was evaluated through optical microscopy and scanning electron microscopy (SEM). The results showed that the addition of extreme pressure (EP) and anti-wear and corrosion inhibitor (CI) additives significantly improve the tribological properties of the fluids. In all assays, was formed a lubricating film that is responsible for reducing the coefficient of metal-to-metal wear. It was observed that the addition of EP and IC additives in the in natura vegetable oils of passion fruit and moringa did not favor a significant reduction in wear. The bio-lubricants developed from passion fruit and moringa oils modified via epoxidation presented satisfactory tribological properties and shown to be potential lubricants for replacement of commercial mineral-based fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling fluids have fundamental importance in the petroleum activities, since they are responsible for remove the cuttings, maintain pressure and well stability, preventing collapse and inflow of fluid into the rock formation and maintain lubrication and cooling the drill. There are basically three types of drilling fluids: water-based, non-aqueous and aerated based. The water-based drilling fluid is widely used because it is less aggressive to the environment and provide excellent stability and inhibition (when the water based drilling fluid is a inhibition fluid), among other qualities. Produced water is generated simultaneously with oil during production and has high concentrations of metals and contaminants, so it’s necessary to treat for disposal this water. The produced water from the fields of Urucu-AM and Riacho da forquilha-RN have high concentrations of contaminants, metals and salts such as calcium and magnesium, complicating their treatment and disposal. Thus, the objective was to analyze the use of synthetic produced water with similar characteristics of produced water from Urucu-AM and Riacho da Forquilha-RN for formulate a water-based drilling mud, noting the influence of varying the concentration of calcium and magnesium into filtered and rheology tests. We conducted a simple 32 factorial experimental design for statistical modeling of data. The results showed that the varying concentrations of calcium and magnesium did not influence the rheology of the fluid, where in the plastic viscosity, apparent viscosity and the initial and final gels does not varied significantly. For the filtrate tests, calcium concentration in a linear fashion influenced chloride concentration, where when we have a higher concentration of calcium we have a higher the concentration of chloride in the filtrate. For the Urucu’s produced water based fluids, volume of filtrate was observed that the calcium concentration influences quadratically, this means that high calcium concentrations interfere with the power of the inhibitors used in the formulation of the filtered fluid. For Riacho’s produced water based fluid, Calcium’s influences is linear for volume of filtrate. The magnesium concentration was significant only for chloride concentration in a quadratic way just for Urucu’s produced water based fluids. The mud with maximum concentration of magnesium (9,411g/L), but minimal concentration of calcium (0,733g/L) showed good results. Therefore, a maximum water produced by magnesium concentration of 9,411g/L and the maximum calcium concentration of 0,733g/L can be used for formulating water-based drilling fluids, providing appropriate properties for this kind of fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cutting fluids are lubricants used in machining processes, because they present many benefits for different processes. They have many functions, such as lubrication, cooling, improvement in surface finishing, besides they decreases the tool wear and protect it against corrosion. Therefore due to new environment laws and demand to green products, new cutting fluids must be development. These shall be biodegradable, non-toxic, safety for environment and operator healthy. Thus, vegetable oils are a good option to solve this problem, replacing the mineral oils. In this context, this work aimed to develop an emulsion cutting fluid from epoxidized vegetable oil, promoting better lubrication and cooling in machining processes, besides being environment friendly. The methodology was divided in five steps: first one was the biolubricant synthesis by epoxidation reaction. Following this, the biolubricant was characterized in terms of density, acidity, iodo index, oxirane index, viscosity, thermal stability and chemical composition. The third step was to develop an emulsion O/A with different oil concentration (10, 20 and 25%) and surfactant concentration (1, 2.5 and 5%). Also, emulsion stability was studied. The emulsion tribological performance were carried out in HFRR (High Frequency Reciprocating Rig), it consists in ball-disc contact. Results showed that the vegetable based lubricant may be synthesized by epoxidationreaction, the spectra showed that there was 100% conversion of the epoxy rings unsaturations. In regard the tribological assessment is observed that the percentage of oil present in the emulsion directly influenced the film formation and coefficient of friction for higher concentrations the film formation process is slow and unstable, and the coefficient of friction. The high concentrations of surfactants have not improved the emulsions tribological performance. The best performance in friction reduction was observed to emulsion with 10% of oil and 5% of surfactant, its average wear scar was 202 μm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better”. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ± 0.05 mm, Ra 0.05 ± 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ± 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ± 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better”. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ± 0.05 mm, Ra 0.05 ± 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ± 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ± 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The micro-deformations caused by cyclic loading origins the variation of the distances between atoms of the crystal lattice producing the irreversible component. In order to study and understand the microstructural behavior of the material this paper investigated the influence suffered by residual stresses in thrust rolling bearing races fabricated in AISI 52100 steel, after tests by cyclic rolling contact in a tribometer at 1m/s under two contact pressures (500 MPa and 1400 MPa) in dry and boundary lubrication conditions. Procedures of tests thermo-acustically isolated were developed for monitoring the contact temperature and sound pressure level signals to establish a comparison between the residual stress measurements, micro-hardness Vickers and micrographic registers searching an indication of wear evolution. The sin²ψ method by X-ray diffraction technique was used to quantify the residual stresses. Three raceway zones were selected for the evaluation of wear and surface morphology after predetermined cycling, comparing with their new condition ("as received"). Micro-hardness and residual stress measurements showed significant changes after the tests and it was possible to observe the relationship between the increase of sound pressure level and the residual stress for dry and lubricated conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The micro-deformations caused by cyclic loading origins the variation of the distances between atoms of the crystal lattice producing the irreversible component. In order to study and understand the microstructural behavior of the material this paper investigated the influence suffered by residual stresses in thrust rolling bearing races fabricated in AISI 52100 steel, after tests by cyclic rolling contact in a tribometer at 1m/s under two contact pressures (500 MPa and 1400 MPa) in dry and boundary lubrication conditions. Procedures of tests thermo-acustically isolated were developed for monitoring the contact temperature and sound pressure level signals to establish a comparison between the residual stress measurements, micro-hardness Vickers and micrographic registers searching an indication of wear evolution. The sin²ψ method by X-ray diffraction technique was used to quantify the residual stresses. Three raceway zones were selected for the evaluation of wear and surface morphology after predetermined cycling, comparing with their new condition ("as received"). Micro-hardness and residual stress measurements showed significant changes after the tests and it was possible to observe the relationship between the increase of sound pressure level and the residual stress for dry and lubricated conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Echtzeitbasierte Anlagenüberwachung gewinnt in industrieller Umgebung zunehmend an Bedeutung. Die frühzeitige Erfassung von Störungen ermöglicht es Unternehmen Anlagen punktgenau zu warten und somit deren Stillstandszeiten zu reduzieren. Auch im Bereich der Fördertechnik sind diese Systeme er-wünscht, aber aufgrund des beengten Bauraums ge-staltet sich ihre Integration oftmals schwierig. Im Fol-genden wird eine Baugruppe vorgestellt, welche das Reibwert- und Schmierstoffverhalten fördertechni-scher Anlagen in Echtzeit erfassen kann.