914 resultados para Local heat transfer measurements
Resumo:
From January to March 1987, heat flow measurements were tried at four sites (Sites 689, 690, 695, and 696) during ODP Leg 113, in the Weddell Sea, Antarctica. At Site 690 (Maud Rise), a convex upward shaped temperature vs. depth profile was observed. This profile cannot be explained by steady-state conduction through solid materials only. We conclude that the minimum heat flow value at Site 690 is 45 mW/m2. A prominent bottom simulating reflector (BSR) was observed at 600 mbsf at Site 695. However, the observed temperature is too high to explain the BSR as a gas hydrate. The origin of the BSR remains unknown, although it is probably of biogenic origin as observed in the Bering Sea during DSDP Leg 19. After correcting for the effects of sedimentation, heat flow values at Sites 695 and 696 are 69 and 63 mW/m2, respectively. Furthermore, we compiled heat flow data south of 50°S. In the Weddell Sea region, the eastern part shows relatively low heat flow in comparison with the western part, with the boundary between them at about 15°W longitude.
Resumo:
Mud volcanoes (MV) are sources of mass and energy, transported from deeper levels of the sediment pile to the surface. Together with fluid and gas, thermal energy is emitted through these structures. Therefore heat flow determination is a sensible tool to detect and quantify the amount of convective flow. In the Gulf of Cadiz several mud volcanoes can be found along major tectonic lines (SWIM faults). We employ geothermal measurements to observe the activity of mud volcanoes and possible leakage at the faults apart from pronounced structures.
Resumo:
New data show that the thermal field is definitely related to the geologic structure at depth and to other geophysical fields. Low heat-flow values along reliably established subsurface faults suggest absence of a heated zone of the earth's crust and upper mantle in these regions.