945 resultados para Local blood flow measurement
Resumo:
Objective: Impaired blood flow of the gastric tube represents a major cause of anastomotic leakage after esophageal resection. In order to improve local vascularisation, preoperative embolization (PE) of the left gastric artery has recently been proposed. The aimof this study was to assess our initial experience of this novel approach with a particular focus on anastomotic leakage.Methods: A consecutive series of 102 patients (81 male, 21 female, median age 64 years) underwent resection (82 Ivor-Lewis procedures, 9 transhiatal resections, 11 triple incisions) for esophageal malignancies at our institution from 2000 to 2009. Since 2004, PE was used selectively in 19 patients 21 days prior to elective esophagectomy. Selection criteria were normal gastric vascular anatomy, no pre-existing vascular disease, i.e. atheromatosis of the celiac trunk or superior mesenteric artery, and resectability of the tumor. PE was performed under local anesthesia on a dedicated system in a standard fashion. Following percutaneous transfemoral visceral angiography to identify gastric vascular anatomy, embolization was performed either with 5-F or with coaxial 3-F catheters and fibered metal coils. We analyzed retrospectively patient's data, operative data, and outcome from a prospective database.Results: The overall anastomotic leakage rate was 18・6% (19/102 patients); cervical anastomosis had a leak rate of 25% compared to intrathoracic anastomosis leak rate of 18・2%. While 17 of 83 patients without PE developed anastomotic leakage (20・5%), there were only 2 of 19 patients after PE revealing an anastomotic leakage (10・5%). Otherwise, patients with PE had no more other complications. There was only one PE-related complication (i.e. partial splenic necrosis).Mean hospital stay was 25 days versus 27 days for patients with PE and without PE, respectively. The mortality rate was 7・8% (8/102 patients), whereby four deaths were related to anastomotic leakage (1 and 3 patients with PE and without PE, respectively).Conclusion: PE is an interesting novel approach to improve gastric blood flow in order to minimize anastomotic leakage. Its application is safe and technically easy. Our preliminary experience revealed a decrease of the anastomotic leakage rate of almost 50%.
Resumo:
Manganese (Mn(2+))-enhanced magnetic resonance imaging studies of the neuronal pathways of the hypothalamus showed that information about the regulation of food intake and energy balance circulate through specific hypothalamic nuclei. The dehydration-induced anorexia (DIA) model demonstrated to be appropriate for studying the hypothalamus with Mn(2+)-enhanced magnetic resonance imaging. Manganese is involved in the normal functioning of a variety of physiological processes and is associated with enzymes contributing to neurotransmitter synthesis and metabolism. It also induces psychiatric and motor disturbances. The molecular mechanisms by which Mn(2+) produces alterations of the hypothalamic physiological processes are not well understood. (1)H-magnetic resonance spectroscopy measurements of the rodent hypothalamus are challenging due to the distant location of the hypothalamus resulting in limited measurement sensitivity. The present study proposed to investigate the effects of Mn(2+) on the neurochemical profile of the hypothalamus in normal, DIA, and overnight fasted female rats at 14.1 T. Results provide evidence that γ-aminobutyric acid has an essential role in the maintenance of energy homeostasis in the hypothalamus but is not condition specific. On the contrary, glutamine, glutamate, and taurine appear to respond more accurately to Mn(2+) exposure. An increase in glutamine levels could also be a characteristic response of the hypothalamus to DIA.
Resumo:
The effects of continuous infusions of 2 synthetic atrial natriuretic peptides Ile12-(3-28) (rANP) and Meth12-(3-28) (hANP) eicosahexapeptides on blood pressure, heart rate, skin blood flow, glomerular filtration rate, renal plasma flow, apparent hepatic blood flow, and carotid blood flow were evaluated in normal volunteers. A rANP infusion at increasing rates (1-40 micrograms/min) induced a decrease in blood pressure, an increase in heart rate and in skin blood flow linearly related to the dose administered. In contrast, hANP infusion at 1 microgram/min for 4 hours induced an initial increase followed by a secondary fall in skin blood flow without blood pressure changes. A 4-hour rANP infusion at 0.5 and 5 mcg/min did not alter glomerular filtration rate but induced a delayed and dose-related fall in renal plasma flow from 531 to 461 (p less than 0.05), and from 554 to 342 ml/min (p less than 0.001) respectively, with a consequential rise in the filtration fraction. The 5 mcg/min dose furthermore significantly reduced blood pressure following a latency period of 2.5 hours. A 2-hours rANP infusion at 0.5 micrograms/min induced a fall in apparent hepatic blood flow from 1,087 to 863 ml/min (p less than 0.01), without simultaneously altering blood pressure. Similarly, a 2-hour hANP infusion at 2 micrograms/min altered neither blood pressure nor carotid blood flow. In conclusion, ANP infusion induced changes in systemic and regional hemodynamics varying in direction, intensity and duration.
Resumo:
Rats chronically cannulated in the carotid artery and the muscular branch of the femoral vein were subjected to a cold (4 °C) environment for up to 2 h. The changes in blood flow (measured with 46Sc microspheres) and arterio-venous differences in the concentrations of glucose, lactate, triacylglycerols and amino acids allowed the estimation of substrate (and energy) balances across the hindleg. Mean glucose uptake was 0.28mmol min21, mean lactate release was 0.33mmol min21 and the free fatty acid basal release of 0.31mmol min21 was practically zero upon exposure to the cold; the initial uptake of triacylglycerols gave place to a massive release following exposure. The measurement of PO·, PCO· and pH also allowed the estimation of oxygen, CO2 and bicarbonate balances and respiratory quotient changes across the hindleg. The contribution of amino acids to the energy balance of the hindleg was assumed to be low. These data were used to determine the sources of energy used to maintain muscle shivering with time. Three distinct phases were observed in hindleg substrate utilization. (1) The onset of shivering, with the use of glucose/glycogen and an increase in lactate efflux. Lipid oxidation was practically zero (respiratory quotient near 1), but the uptake of triacylglycerols from the blood remained unchanged. (2) A substrate-energy shift, with drastically decreased use of glucose/glycogen, and of lactate efflux; utilization of triacylglycerol as practically the sole source of energy (respiratory quotient approximately 0.7); decreasing uptake of triacylglycerol and increased tissue lipid mobilization. (3) The onset of a new heat-homeostasis setting for prolonged cold-exposure, with maintenance of muscle energy and heat production based on triacylglycerol utilization and efflux from the hindleg (muscle plus skin and subcutaneous adipose masses) contributing energy to help sustain heat production by the core organs and surrounding brown adipose tissue.
Resumo:
BACKGROUND: The relationship between coronary endothelial function and coronary calcification is not well established. METHODS: Forty-six patients 17 men [37%]; age, 47.4+/-11.4 years prospectively underwent testing for coronary endothelial function and measurement of coronary artery calcification (CAC). RESULTS: Log CAC scores were not significantly different between patients with normal (n=31) and abnormal (n=15) response of epicardial coronary artery diameter to acetylcholine (%CAD(Ach)) (median (25, 75 percentile) 1.1 (0.0, 3.7) vs. 0.3 (0.0, 2.4), P=.32) and with normal (n=28) and abnormal (n=18) response of coronary blood flow to acetylcholine (%CBF(Ach)) (0.5 (0.0, 3.6) vs. 0.5 (0.0, 3.2), P=.76). Log CAC scores did not correlate with %CAD(Ach) (r=0.08, P=.59), %CBF(Ach) (r=0.14, P=.35). CONCLUSIONS: In patients without significant coronary artery disease, coronary endothelial dysfunction showed no apparent association with coronary calcification. Our findings suggest that these 2 markers may represent separate, independent processes in the progression of coronary atherosclerosis.
Resumo:
In recent years, several vasopressin antagonists have been developed that block V-1 receptors either selectively or nonselectively.(1,2) To date, one combined V-1/V-2 antagonist (primarily a V-2 antagonist, as determined on the basis of human receptor binding data), conivaptan, has been approved for the treatment of euvolemic hyponatremia.(3,4) We have previously shown that the vascular properties of a vasopressin V-1 antagonist can be investigated safely and reliably in healthy subjects. We used the measurement of skin blood flow after intradermic injection of exogenous arginine vasopressin on a skin area prevasodilated with calcitonin gene-related peptide (CGRP).(3,5) This technique enables the documentation of the dose-dependent effects of vasopressin or vasopressin antagonists. In this study, we have characterized the V-1a pharmacodynamic profile of increasing doses of RWJ-676070, a new orally active dual V-1a/V-2 receptor antagonist, in healthy subjects.(5)
Resumo:
PURPOSE: To compare 3 different flow targeted magnetization preparation strategies for coronary MR angiography (cMRA), which allow selective visualization of the vessel lumen. MATERIAL AND METHODS: The right coronary artery of 10 healthy subjects was investigated on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Healthcare, Best, NL). A navigator-gated and ECG-triggered 3D radial steady-state free-precession (SSFP) cMRA sequence with 3 different magnetization preparation schemes was performed referred to as projection SSFP (selective labeling of the aorta, subtraction of 2 data sets), LoReIn SSFP (double-inversion preparation, selective labeling of the aorta, 1 data set), and inflow SSFP (inversion preparation, selective labeling of the coronary artery, 1 data set). Signal-to-noise ratio (SNR) of the coronary artery and aorta, contrast-to-noise ratio (CNR) between the coronary artery and epicardial fat, vessel length and vessel sharpness were analyzed. RESULTS: All cMRA sequences were successfully obtained in all subjects. Both projection SSFP and LoReIn SSFP allowed for selective visualization of the coronary arteries with excellent background suppression. Scan time was doubled in projection SSFP because of the need for subtraction of 2 data sets. In inflow SSFP, background suppression was limited to the tissue included in the inversion volume. Projection SSFP (SNR(coro): 25.6 +/- 12.1; SNR(ao): 26.1 +/- 16.8; CNR(coro-fat): 22.0 +/- 11.7) and inflow SSFP (SNR(coro): 27.9 +/- 5.4; SNR(ao): 37.4 +/- 9.2; CNR(coro-fat): 24.9 +/- 4.8) yielded significantly increased SNR and CNR compared with LoReIn SSFP (SNR(coro): 12.3 +/- 5.4; SNR(ao): 11.8 +/- 5.8; CNR(coro-fat): 9.8 +/- 5.5; P < 0.05 for both). Longest visible vessel length was found with projection SSFP (79.5 mm +/- 18.9; P < 0.05 vs. LoReIn) whereas vessel sharpness was best in inflow SSFP (68.2% +/- 4.5%; P < 0.05 vs. LoReIn). Consistently good image quality was achieved using inflow SSFP likely because of the simple planning procedure and short scanning time. CONCLUSION: Three flow targeted cMRA approaches are presented, which provide selective visualization of the coronary vessel lumen and in addition blood flow information without the need of contrast agent administration. Inflow SSFP yielded highest SNR, CNR and vessel sharpness and may prove useful as a fast and efficient approach for assessing proximal and mid vessel coronary blood flow, whereas requiring less planning skills than projection SSFP or LoReIn SSFP.
Resumo:
The purpose of this study was to evaluate the contribution of renal sodium handling by the proximal tubule as an independent determinant of blood pressure responsiveness to salt in hypertension. We measured blood pressure (BP), renal hemodynamics, and segmental renal sodium handling (with lithium used as a marker of proximal sodium reabsorption) in 38 hypertensive patients and 27 normotensive subjects (15 young and 12 age-matched) on a high and low sodium diet. In control subjects, changing the diet from a low to a high sodium content resulted in no change in BP and increases in glomerular filtration rate (P<0.05), renal plasma flow (P<0.05), and fractional excretion of lithium (FE(Li), P<0.01). In hypertensive patients, comparable variations of sodium intake induced an increase in BP with no change in renal hemodynamics and proximal sodium reabsorption. When analyzed by tertiles of their BP response to salt, salt-insensitive hypertensive patients of the first tertile disclosed a pattern of adaptation of proximal sodium reabsorption comparable to that of control subjects, whereas the most salt-sensitive patients of the third tertile had an inverse pattern with a high FE(Li) on low salt and a lower FE(Li) on high salt, suggesting an inappropriate modulation of proximal sodium reabsorption. The BP response to salt correlated positively with age (r=0.34, P=0.036) and negatively with the changes in FE(Li) (r=-0.37, P=0.029). In a multivariate analysis, the changes in FE(Li) were significantly and independently associated with the salt-induced changes in BP. These results suggest that proximal sodium reabsorption is an independent determinant of the BP response to salt in hypertension.
Resumo:
The purpose of this study was to assess whether the administration of a calcium entry blocker can prevent the acute blood pressure rise induced by cigarette smoking. Seven male habitual smokers were included. After 45 min of equilibration, they took in randomized single-blind fashion at a 1 week interval either a placebo or nifedipine, 10 mg p.o. Thirty minutes thereafter, the subjects smoked within 10 min two cigarettes containing 1.4 mg of nicotine each. In addition to heart rate and skin blood flow (laser Doppler method), blood pressure of the median left finger was monitored continuously for 100 min using a noninvasive device (Finapres). Nifedipine induced an increase in skin blood flow that was not influenced by smoking. This skin blood flow response was observed although nifedipine had by itself no effect on systemic blood pressure. The calcium antagonist markedly attenuated the blood pressure rise induced by cigarette smoking. However, it tended to accentuate the heart rate acceleration resulting from inhalation of nicotine-containing smoke.
Resumo:
Arterial Spin Labeling (ASL) is a method to measure perfusion using magnetically labeled blood water as an endogenous tracer. Being fully non-invasive, this technique is attractive for longitudinal studies of cerebral blood flow in healthy and diseased individuals, or as a surrogate marker of metabolism. So far, ASL has been restricted mostly to specialist centers due to a generally low SNR of the method and potential issues with user-dependent analysis needed to obtain quantitative measurement of cerebral blood flow (CBF). Here, we evaluated a particular implementation of ASL (called Quantitative STAR labeling of Arterial Regions or QUASAR), a method providing user independent quantification of CBF in a large test-retest study across sites from around the world, dubbed "The QUASAR reproducibility study". Altogether, 28 sites located in Asia, Europe and North America participated and a total of 284 healthy volunteers were scanned. Minimal operator dependence was assured by using an automatic planning tool and its accuracy and potential usefulness in multi-center trials was evaluated as well. Accurate repositioning between sessions was achieved with the automatic planning tool showing mean displacements of 1.87+/-0.95 mm and rotations of 1.56+/-0.66 degrees . Mean gray matter CBF was 47.4+/-7.5 [ml/100 g/min] with a between-subject standard variation SD(b)=5.5 [ml/100 g/min] and a within-subject standard deviation SD(w)=4.7 [ml/100 g/min]. The corresponding repeatability was 13.0 [ml/100 g/min] and was found to be within the range of previous studies.
Resumo:
End-stage renal disease patients have endothelial dysfunction and high plasma levels of ADMA (asymmetric omega-NG,NG-dimethylarginine), an endogenous inhibitor of NOS (NO synthase). The actual link between these abnormalities is controversial. Therefore, in the present study, we investigated whether HD (haemodialysis) has an acute impact on NO-dependent vasodilation and plasma ADMA in these patients. A total of 24 patients undergoing maintenance HD (HD group) and 24 age- and gender-matched healthy controls (Control group) were enrolled. The increase in forearm SkBF (skin blood flow) caused by local heating to 41 degrees C (SkBF41), known to depend on endothelial NO production, was determined with laser Doppler imaging. SkBF41 was expressed as a percentage of the vasodilatory reserve obtained from the maximal SkBF induced by local heating to 43 degrees C (independent of NO). In HD patients, SkBF41 was assessed on two successive HD sessions, once immediately before and once immediately after HD. Plasma ADMA was assayed simultaneously with MS/MS (tandem MS). In the Control group, SkBF41 was determined twice, on two different days, and plasma ADMA was assayed once. In HD patients, SkBF41 was identical before (82.2+/-13.1%) and after (82.7+/-12.4%) HD, but was lower than in controls (day 1, 89.6+/-6.1; day 2, 89.2+/-6.9%; P<0.01 compared with the HD group). In contrast, plasma ADMA was higher before (0.98+/-0.17 micromol/l) than after (0.58+/-0.10 micromol/l; P<0.01) HD. ADMA levels after HD did not differ from those obtained in controls (0.56+/-0.11 micromol/l). These findings show that HD patients have impaired NO-dependent vasodilation in forearm skin, an abnormality not acutely reversed by HD and not explained by ADMA accumulation.
Resumo:
PURPOSE: Visualization of coronary blood flow in the right and left coronary system in volunteers and patients by means of a modified inversion-prepared bright-blood coronary magnetic resonance angiography (cMRA) sequence. MATERIALS AND METHODS: cMRA was performed in 14 healthy volunteers and 19 patients on a 1.5 Tesla MR system using a free-breathing 3D balanced turbo field echo (b-TFE) sequence with radial k-space sampling. For magnetization preparation a slab selective and a 2D selective inversion pulse were used for the right and left coronary system, respectively. cMRA images were evaluated in terms of clinically relevant stenoses (< 50 %) and compared to conventional catheter angiography. Signal was measured in the coronary arteries (coro), the aorta (ao) and in the epicardial fat (fat) to determine SNR and CNR. In addition, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: The use of a selective inversion pre-pulse allowed direct visualization of the coronary blood flow in the right and left coronary system. The measured SNR and CNR, vessel length, and vessel sharpness in volunteers (SNR coro: 28.3 +/- 5.0; SNR ao: 37.6 +/- 8.4; CNR coro-fat: 25.3 +/- 4.5; LAD: 128.0 cm +/- 8.8; RCA: 74.6 cm +/- 12.4; Sharpness: 66.6 % +/- 4.8) were slightly increased compared to those in patients (SNR coro: 24.1 +/- 3.8; SNR ao: 33.8 +/- 11.4; CNR coro-fat: 19.9 +/- 3.3; LAD: 112.5 cm +/- 13.8; RCA: 69.6 cm +/- 16.6; Sharpness: 58.9 % +/- 7.9; n.s.). In the patient study the assessment of 42 coronary segments lead to correct identification of 10 clinically relevant stenoses. CONCLUSION: The modification of a previously published inversion-prepared cMRA sequence allowed direct visualization of the coronary blood flow in the right as well as in the left coronary system. In addition, this sequence proved to be highly sensitive regarding the assessment of clinically relevant stenotic lesions.
Resumo:
OBJECTIVE: Cuff inflation at the arm is known to cause an instantaneous rise in blood pressure, which might be due to the discomfort of the procedure and might interfere with the precision of the blood pressure measurement. In this study, we compared the reactive rise in blood pressure induced by cuff inflation when the cuff was placed at the upper arm level and at the wrist. PARTICIPANTS AND METHODS: The reactive rise in systolic and diastolic blood pressure to cuff inflation was measured in 34 normotensive participants and 34 hypertensive patients. Each participant was equipped with two cuffs, one around the right upper arm (OMRON HEM-CR19, 22-32 cm) and one around the right wrist (OMRON HEM-CS 19, 17-22 cm; Omron Health Care Europe BV, Hoofddorp, The Netherlands). The cuffs were inflated in a double random order (maximal cuff pressure and position of the cuff) with two maximal cuff pressures: 180 and 240 mmHg. The cuffs were linked to an oscillometric device (OMRON HEM 907; Omron Health Care). Simultaneously, blood pressure was measured continuously at the middle finger of the left hand using photoplethysmography. Three measurements were made at each level of blood pressure at the arm and at the wrist, and the sequence of measurements was randomized. RESULTS: In normotensive participants, no significant difference was observed in the reactive rise in blood pressure when the cuff was inflated either at the arm or at the wrist irrespective of the level of cuff inflation. Inflating a cuff at the arm, however, induced a significantly greater rise in blood pressure than inflating it at the wrist in hypertensive participants for both systolic and diastolic pressures (P<0.01), and at both levels of cuff inflation. The blood pressure response to cuff inflation was independent of baseline blood pressure. CONCLUSIONS: The results show that in hypertensive patients, cuff inflation at the wrist produces a smaller reactive rise in blood pressure. The difference between the arm and the wrist is independent of the patient's level of blood pressure.
Resumo:
BACKGROUND: Recently, a compact cardiopulmonary support (CPS) system designed for quick set-up for example, during emergency cannulation, has been introduced. Traditional rectilinear percutaneous cannulas are standard for remote vascular access with the original design. The present study was designed to assess the potential of performance increase by the introduction of next-generation, self-expanding venous cannulas, which can take advantage of the luminal width of the venous vasculature despite a relatively small access orifice. METHODS: Veno-arterial bypass was established in three bovine experiments (69+/-10 kg). The Lifebridge (Lifebridge GmbH, Munich, Germany) system was connected to the right atrium in a trans-jugular fashion with various venous cannulas; and the oxygenated blood was returned through the carotid artery with a 17 F percutaneous cannula. Two different venous cannulas were studied, and the correlation between the centrifugal pump speed (1500-3900 RPM), flow and the required negative pressure on the venous side was established: (A) Biomedicus 19 F (Medtronic, Tolochenaz, Switzerland); (B) Smart canula 18 F/36 F (Smartcanula LLC, Lausanne, Switzerland). RESULTS: At 1500 RPM, the blood flow was 0.44+/-0.26 l min(-1) for the 19 F rectilinear cannula versus 0.73+/-0.34 l min(-1) for the 18/36 F self-expanding cannula. At 2500 RPM the blood flow was 1.63+/-0.62 l min(-1) for the 19F rectilinear cannula versus 2.13+/-0.34 l min(-1) for the 18/36 F self-expanding cannula. At 3500 RPM, the blood flow was 2.78+/-0.47 l min(-1) for the 19 F rectilinear cannula versus 3.64+/-0.39 l min(-1) for the 18/36 F self-expanding cannula (p<0.01 for 18/36 F vs 19 F). At 1500 RPM, the venous line pressure was 18+/-8 mmHg for the 19F rectilinear cannula versus 19+/-5 mmHg for the 18/36 F self-expanding cannula. At 2500 RPM the venous line pressure accounted for -22+/-32 mmHg for the 19 F rectilinear cannula versus 2+/-5 mmHg for the 18/36 F self-expanding cannula. At 3500 RPM, the venous line pressure was -112+/-42 mmHg for the rectilinear cannula versus 28+/-7 mmHg for the 18/36 F self-expanding cannula (p<0.01 for 18 F/36 F vs 19 F). Conclusions: The negative pressure required to achieve adequate venous drainage with the self-expanding venous cannula accounts for approximately 31% of the pressure necessary with the 19 F rectilinear cannula. In addition, a pump flow of more than 4 l min(-1) can be achieved with the self-expanding design and a well-accepted negative inlet pressure for minimal blood trauma of less than 50 mmHg.