896 resultados para Liver -- Diseases -- Genetic aspects
Resumo:
Hepatic fibrosis is the response to chronic injury from viral, toxic, metabolic, cholestatic, or autoimmune liver injury. However, only a minority of affected individuals develop advanced fibrosis or cirrhosis, suggesting that modifiers determine the individual risk. Aside from well-established progression factors including gender, duration of exposure to the disease, and ethnicity, unknown host genetic factors are likely to influence disease progression and prognosis. Potential genetic susceptibility loci are single nucleotide polymorphisms in fibrosis-associated genes, point mutations, microsatellites, and haplotype blocks composed of genes pivotal for fibrosis development. However, the study of complex polygenetic diseases poses numerous pitfalls in contrast to the elucidation of monogenetic (i.e., Mendelian) diseases. Many publications on the role of certain genetic variants in modulating the progression of hepatic fibrosis have been limited by inadequate study design and low statistical power. At present, powerful research strategies are being developed that allow the application of knowledge derived from the successful sequencing of the human genome that will help to translate our newly acquired insight into practical improvements for research activities and medical practice.
Resumo:
BACKGROUND: As only a minority of alcoholics develop cirrhosis, polymorphic genes, whose products are involved in fibrosis development were suggested to confer individual susceptibility. We tested whether a functional promoter polymorphism in the gene encoding matrix metalloproteinase-3 (MMP-3; 1171 5A/6A) was associated liver cirrhosis in alcoholics. METHODS: Independent cohorts from the UK and Germany were studied. (i) UK cohort: 320 alcoholic cirrhotics and 183 heavy drinkers without liver damage and (ii) German cohort: 149 alcoholic cirrhotics, 220 alcoholic cirrhotics who underwent liver transplantation and 151 alcoholics without liver disease. Patients were genotyped for MMP-3 variants by restriction fragment length polymorphism, single strand confirmation polymorphism, and direct sequencing. In addition, MMP-3 transcript levels were correlated with MMP-3 genotype in normal liver tissues. RESULTS: Matrix metalloproteinase-3 genotype and allele distribution in all 1023 alcoholic patients were in Hardy-Weinberg equilibrium. No significant differences in MMP-3 genotype and allele frequencies were observed either between alcoholics with or without cirrhosis. There were no differences in hepatic mRNA transcription levels according to MMP-3 genotype. CONCLUSIONS: Matrix metalloproteinase-3 1171 promoter polymorphism plays no role in the genetic predisposition for liver cirrhosis in alcoholics. Stringently designed candidate gene association studies are required to exclude chance observations.
Resumo:
BACKGROUND: Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), produced by endotoxin-activated Kupffer cells, play a key role in the pathogenesis of alcoholic liver cirrhosis (ALC). Alleles TNFA -238A, IL1B -31T and variant IL1RN*2 of repeat polymorphism in the gene encoding the IL-1 receptor antagonist increase production of TNF-alpha and IL-1beta, respectively. Alleles CD14 -159T, TLR4 c.896G and TLR4 c.1196T modify activation of Kupffer cells by endotoxin. We confirmed the published associations between these common variants and genetic predisposition to ALC by means of a large case-control association study conducted on two Central European populations. METHODS: The study population comprised a Czech sample of 198 ALC patients and 370 controls (MONICA project), and a German sample of 173 ALC patients and 331 controls (KORA-Augsburg), and 109 heavy drinkers without liver disease. RESULTS: Single locus analysis revealed no significant difference between patients and controls in all tested loci. Diplotype [IL1RN 2/ 2; IL1B -31T+] was associated with increased risk of ALC in the pilot study, but not in the validation samples. CONCLUSIONS: Although cytokine mediated immune reactions play a role in the pathogenesis of ALC, hereditary susceptibility caused by variants in the corresponding genes is low in Central European populations.
Resumo:
In addition to self reports and questionnaires, biomarkers are of relevance in the diagnosis of and therapy for alcohol use disorders. Traditional biomarkers such as gamma-glutamyl transpeptidase or mean corpuscular volume are indirect biomarkers and are subject to the influence of age, gender and non-alcohol related diseases, among others. Direct metabolites of ethanol such as Ethyl glucuronide (EtG), ethyl sulphate (EtS) and phosphatidylethanol (PEth) are direct metabolites of ethanol, that are positive after intake of ethyl alcohol. They represent useful diagnostic tools for identifying alcohol use even more accurately than traditional biomarkers. Each of these drinking indicators remains positive in serum and urine for a characteristic time spectrum after the cessation of ethanol intake - EtG and EtS in urine up to 7 days, EtG in hair for months after ethanol has left the body. Applications include clinical routine use, emergency room settings, proof of abstinence in alcohol rehabilitation programmes, driving under influence offenders, workplace testing, assessment of alcohol intake in the context of liver transplantation and foetal alcohol syndrome. Due to their properties, they open up new perspectives for prevention, interdisciplinary cooperation, diagnosis of and therapy for alcohol-related problems.
Resumo:
A complex interaction among metabolic factors, adipose tissue lipolysis, oxidative stress, and insulin resistance results in a deleterious process that may link nonalcoholic fatty liver disease (NAFLD) with severe cardiovascular (CV) outcomes. Patients with NAFLD are at higher risk of atherosclerosis, new onset of CV events, and overall mortality. The strong association between NAFLD and CV disease should affect clinical practice, with screening and surveillance of patients with NAFLD. This review discusses the data linking these major diseases.
Resumo:
The differentiation of the reproductive organs is an essential developmental process required for the proper transmission of the genetic material. Müllerian inhibiting substance (MIS) is produced by testes and is necessary for the regression of the Müllerian ducts: the anlagen of the uterus, fallopian tubes and cervix. In vitro and standard transgenic mouse studies indicate that the nuclear hormone receptor Steroidogenic factor 1 (SF-1) and the transcription factor SOX9 play an essential role in the regulation of Mis. To test this hypothesis, mutations in the endogenous SF-1 and SOX9 binding sites in the mouse Mis promoter were introduced by gene targeting in embryonic stem (ES) cells. In disagreement with cell culture and transgenic mouse studies, male mice homozygous for the mutant SF-1 binding site correctly initiated Mis transcription in the fetal testes, although at significantly reduced levels. Surprisingly, sufficient Mis was produced for complete elimination of the Müllerian duct system. However, when the SF-1 binding site mutation was combined with an Mis -null allele, the further decrease in Mis levels led to a partial retention of uterine tissue, but only at a distance from the testes. In contrast, males homozygous for the mutant SOX9 binding site did not initiate Mis transcription, resulting in pseudohermaphrodites with a uterus and oviducts. These studies suggest an essential role for SOX9 in the initiation of Mis transcription, whereas SF-1 appears to act as a quantitative regulator of Mis transcript levels perhaps for influencing non-Müllerian duct tissues. ^ The Mis type II receptor, a member of the TGF- b superfamily, is also required for the proper regression of the Müllerian ducts. Mis type II receptor-deficient human males and their murine counterparts develop as pseudohermaphrodites. A lacZ reporter cassette was introduced into the mouse Mis type II receptor gene, by homologous recombination in ES cells. Expression studies, based on b -galactosidase activity, show marked expression of the MIS type II receptor in the postnatal Sertoli cells of the testis as well as in the prenatal and postnatal granulosa cells of the ovary. Expression is also seen in the mesenchymal cells surrounding the Müllerian duct and in the longitudinal muscle layer of the uterus. ^
Resumo:
Identifying and characterizing the genes responsible for inherited human diseases will ultimately lead to a more holistic understanding of disease pathogenesis, catalyze new diagnostic and treatment modalities, and provide insights into basic biological processes. This dissertation presents research aimed at delineating the genetic and molecular basis of human diseases through epigenetic and functional studies and can be divided into two independent areas of research. The first area of research describes the development of two high-throughput melting curve based methods to assay DNA methylation, referred to as McMSP and McCOBRA. The goal of this project was to develop DNA methylation methods that can be used to rapidly determine the DNA methylation status at a specific locus in a large number of samples. McMSP and McCOBRA provide several advantages over existing methods, as they are simple, accurate, robust, and high-throughput making them applicable to large-scale DNA methylation studies. McMSP and McCOBRA were then used in an epigenetic study of the complex disease Ankylosing spondylitis (AS). Specifically, I tested the hypothesis that aberrant patterns of DNA methylation in five AS candidate genes contribute to disease susceptibility. While no statistically significant methylation differences were observed between cases and controls, this is the first study to investigate the hypothesis that epigenetic variation contributes to AS susceptibility and therefore provides the conceptual framework for future studies. ^ In the second area of research, I performed experiments to better delimit the function of aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), which when mutated causes various forms of inherited blindness such as Leber congenital amaurosis. A yeast two-hybrid screen was performed to identify putative AIPL1-interacting proteins. After screening 2 × 106 bovine retinal cDNA library clones, 6 unique putative AIPL1-interacting proteins were identified. While these 6 AIPL1 protein-protein interactions must be confirmed, their identification is an important step in understanding the functional role of AIPL1 within the retina and will provide insight into the molecular mechanisms underlying inherited blindness. ^
Resumo:
The molecular mechanisms responsible for the expansion and deletion of trinucleotide repeat sequences (TRS) are the focus of our studies. Several hereditary neurological diseases including Huntington's disease, myotonic dystrophy, and fragile X syndrome are associated with the instability of TRS. Using the well defined and controllable model system of Escherichia coli, the influences of three types of DNA incisions on genetic instability of CTG•CAG repeats were studied: DNA double-strand breaks (DSB), single-strand nicks, and single-strand gaps. The DNA incisions were generated in pUC19 derivatives by in vitro cleavage with restriction endonucleases. The cleaved DNA was then transformed into E. coli parental and mutant strains. Double-strand breaks induced deletions throughout the TRS region in an orientation dependent manner relative to the origin of replication. The extent of instability was enhanced by the repeat length and sequence (CTG•CAG vs. CGG•CCG). Mutations in recA and recBC increased deletions, mutations in recF stabilized the TRS, whereas mutations in ruvA had no effect. DSB were repaired by intramolecular recombination, versus an intermolecular gene conversion or crossover mechanism. 30 nt gaps formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nts did not induce expansions or deletions. Formation of this deletion product required the CTG•CAG repeats to be present in the single-stranded region and was stimulated by E. coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the DSB induced instabilities and formation of the 30 nucleotide deletion product. In addition to the in vitro creation of DSBs, several attempts to generate this incision in vivo with the use of EcoR I restriction modification systems were conducted. ^
Resumo:
In order to better take advantage of the abundant results from large-scale genomic association studies, investigators are turning to a genetic risk score (GRS) method in order to combine the information from common modest-effect risk alleles into an efficient risk assessment statistic. The statistical properties of these GRSs are poorly understood. As a first step toward a better understanding of GRSs, a systematic analysis of recent investigations using a GRS was undertaken. GRS studies were searched in the areas of coronary heart disease (CHD), cancer, and other common diseases using bibliographic databases and by hand-searching reference lists and journals. Twenty-one independent case-control studies, cohort studies, and simulation studies (12 in CHD, 9 in other diseases) were identified. The underlying statistical assumptions of the GRS using the experience of the Framingham risk score were investigated. Improvements in the construction of a GRS guided by the concept of composite indicators are discussed. The GRS will be a promising risk assessment tool to improve prediction and diagnosis of common diseases.^
Resumo:
Genetics education for physicians has been a popular publication topic in the United States and in Europe for over 20 years. Decreasing numbers of medical genetics professionals and an increasing volume of genetic information has created a dire need for increased genetics training in medical school and in clinical practice. This study aimed to assess how well pediatrics-focused primary care physicians apply their general genetics knowledge to clinical genetic testing using scenario-based questions. We chose to specifically focus on knowledge of the diagnostic applicability of Chromosomal Microarray (CMA) technology in pediatrics because of its recent recommendation by the International Standard Cytogenomic Array (ISCA) Consortium as a first-tier genetic test for individuals with developmental disabilities and/or congenital anomalies. Proficiency in ordering baseline genetic testing was evaluated for eighty-one respondents from four pediatrics-focused residencies (categorical pediatrics, pediatric neurology, internal medicine/pediatrics, and family practice) at two large residency programs in Houston, Texas. Similar to other studies, we found an overall deficit of genetic testing knowledge, especially among family practice residents. Interestingly, residents who elected to complete a genetics rotation in medical school scored significantly better than expected, as well as better than residents who did not elect to complete a genetics rotation. We suspect that the insufficient knowledge among physicians regarding a baseline genetics work-up is leading to redundant (i.e. concurrent karyotype and CMA) and incorrect (i.e. ordering CMA to detect achondroplasia) genetic testing and is contributing to rising health care costs in the United States. Our results provide specific teaching points upon which medical schools can focus education about clinical genetic testing and suggest that increased collaboration between primary care physicians and genetics professionals could benefit patient health care overall.
Resumo:
Cancer therapy and tumor treatment remain unsolved puzzles. Genetic screening for tumor suppressor genes in Drosophila revealed the Hippo-signaling pathway as a kinase cascade consisting of five core components. Disrupting the pathway by deleting the main component genes breaks the balance of cell proliferation and apoptosis and results in epithelial tissue tumorigenesis. The pathway is therefore believed to be a tumor suppressor pathway. However, a corresponding role in mammals is yet to be determined. Our lab began to investigate the tumor suppression function of the potent mammalian Hippo pathway by putting floxed alleles into the mouse genome flanking the functional-domain-expressing exons in each component (Mst1, Mst2, Sav1, Lats1 and Lats2). These mice were then crossed with different cre-mouse lines to generate conditional knockout mice. Results indicate a ubiquitous tumor suppression function of these components, predominantly in the liver. A further liver specific analysis of the deletion mutation of these components, as well as the Yap/Taz double deletion mutation, reveals essential roles of the Hippo pathway in regulating hepatic quiescence and embryonic liver development. One of the key cellular mechanisms for the Hippo pathway’s involvement in these liver biological events is likely its cell cycle regulation function. Our work will help to develop potential therapeutic approaches for liver cancer.