930 resultados para Linear and nonlinear correlation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the association of visual scores of body structure, precocity and muscularity with production (body weight at 18 months and average daily gain) and reproductive (scrotal circumference) traits in Brahman cattle in order to determine the possible use of these scores as selection criteria to improve carcass quality. Covariance components were estimated by the restricted maximum likelihood method using an animal model that included contemporary group as fixed effect. A total of 1,116 observations of body structure, precocity and muscularity were used. Heritability was 0.39, 043 and 0.40 for body structure, precocity and muscularity, respectively. The genetic correlations were 0.79 between body structure and precocity, 0.87 between body structure and muscularity, and 0.91 between precocity and muscularity. The genetic correlations between visual scores and body weight at 18 months were positive (0.77, 0.57 and 0.59 for body structure, precocity and muscularity, respectively). Similar genetic correlations were observed between average daily gain and visual scores (0.60, 0.57 and 0.48, respectively), whereas the genetic correlations between scrotal circumference and these scores were low (0.13, 0.02, and 0.13). The results indicate that visual scores can be used as selection criteria in Brahman breeding programs. Favorable correlated responses should be seen in average daily gain and body weight at 18 months. However, no correlated response is expected for scrotal circumference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various mechanisms have been proposed to explain extreme waves or rogue waves in an oceanic environment including directional focusing, dispersive focusing, wave-current interaction, and nonlinear modulational instability. The Benjamin-Feir instability (nonlinear modulational instability), however, is considered to be one of the primary mechanisms for rogue-wave occurrence. The nonlinear Schrodinger equation is a well-established approximate model based on the same assumptions as required for the derivation of the Benjamin-Feir theory. Solutions of the nonlinear Schrodinger equation, including new rogue-wave type solutions are presented in the author's dissertation work. The solutions are obtained by using a predictive eigenvalue map based predictor-corrector procedure developed by the author. Features of the predictive map are explored and the influences of certain parameter variations are investigated. The solutions are rescaled to match the length scales of waves generated in a wave tank. Based on the information provided by the map and the details of physical scaling, a framework is developed that can serve as a basis for experimental investigations into a variety of extreme waves as well localizations in wave fields. To derive further fundamental insights into the complexity of extreme wave conditions, Smoothed Particle Hydrodynamics (SPH) simulations are carried out on an advanced Graphic Processing Unit (GPU) based parallel computational platform. Free surface gravity wave simulations have successfully characterized water-wave dispersion in the SPH model while demonstrating extreme energy focusing and wave growth in both linear and nonlinear regimes. A virtual wave tank is simulated wherein wave motions can be excited from either side. Focusing of several wave trains and isolated waves has been simulated. With properly chosen parameters, dispersion effects are observed causing a chirped wave train to focus and exhibit growth. By using the insights derived from the study of the nonlinear Schrodinger equation, modulational instability or self-focusing has been induced in a numerical wave tank and studied through several numerical simulations. Due to the inherent dissipative nature of SPH models, simulating persistent progressive waves can be problematic. This issue has been addressed and an observation-based solution has been provided. The efficacy of SPH in modeling wave focusing can be critical to further our understanding and predicting extreme wave phenomena through simulations. A deeper understanding of the mechanisms underlying extreme energy localization phenomena can help facilitate energy harnessing and serve as a basis to predict and mitigate the impact of energy focusing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess the efficacy of the BARD scoring system in Saudi non‐alcoholic fatty liver disease (NAFLD) patients attending Gizan General Hospital and to identify the clinical variables associated with advanced fibrosis. . Methods: The cross-sectional study involved 120 patients aged ≥ 18 years who attended the Ultrasound Department of Gizan General Hospital, Gizan, Saudi Arabia, during January – June 2013. BARD scoring system comprised the following variables: body mass index (BMI) ≥ 28 = 1 point, aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio ≥ 0.8 = 2 points, and type 2 diabetes mellitus = 1 point. Results: Patients with advanced fibrosis were older (55.0 years) than patients with no/mild fibrosis (48.6 years), albeit not significantly so. A higher BMI was associated with advanced fibrosis in males, females and all study participants (p = 0.013, 0.016 and 0.001, respectively). Advanced fibrosis was more common in older patients with a higher weight to height ratio. Logistic regression suggested that age ≥ 50 years was associated with a 2.52-fold increase in the risk of advanced fibrosis, but this did not have a significant clinical impact (p = 0.087). BMI > 28 was associated with a 26.73-fold increased risk of advanced fibrosis, while AST/ALT ≥ 0.8 was associated with an 18.46-fold increased risk of advanced liver fibrosis (p = 0.002 and 0.006, respectively). Conclusion: The major risk factors for advanced fibrosis using BARD scoring system in patients with NAFLD were old age, BMI > 28, and AST/ALT ≥ 0.8. In addition, grade 3 ultrasonographic fatty liver significantly correlated with advanced fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Oxidative stress in reproductive system leads to sperm DNA damage and sperm membrane lipid peroxidation and may play an important role in the pathogenesis of male infertility, especially in idiopathic cases. Antioxidants such as carotenoids function against free radical damages. Objective: The aim of this study was to determine the levels of lycopene, beta-carotene and retinol in serum and their relationship with sperm DNA damage and lipid peroxidation in infertile and normospermic males. Materials and Methods: Sixty two infertile men and 71 normospermic men participated in this study. Blood and semen samples were collected from all subjects. Sperm DNA damage was measured using TUNEL method. Carotenoids, retinol, and malonedildehyde in serum were also determined. Results: DNA fragmentation was higher in infertile group comparing to control group. Serum levels of lycopene, beta-carotene and, vitamin A in infertile men were significantly lower than normospermic men (p< 0.001, =0.005, and =0.003 respectively). While serum MDA was not significantly different between two groups, MDA in seminal plasma of infertile men was significantly higher than control group (p< 0.001). Conclusion: We concluded that lycopene, beta-carotene, and retinol can reduce sperm DNA fragmentation and lipid peroxidation through their antioxidant effect. Therefore the DNA fragmentation assay and determination of antioxidants factors such as lycopene, beta-carotene and retinol, along with sperm analysis can be useful in diagnosis and treatment of men with idiopathic infertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain functioning relies on the interaction of several neural populations connected through complex connectivity networks, enabling the transmission and integration of information. Recent advances in neuroimaging techniques, such as electroencephalography (EEG), have deepened our understanding of the reciprocal roles played by brain regions during cognitive processes. The underlying idea of this PhD research is that EEG-related functional connectivity (FC) changes in the brain may incorporate important neuromarkers of behavior and cognition, as well as brain disorders, even at subclinical levels. However, a complete understanding of the reliability of the wide range of existing connectivity estimation techniques is still lacking. The first part of this work addresses this limitation by employing Neural Mass Models (NMMs), which simulate EEG activity and offer a unique tool to study interconnected networks of brain regions in controlled conditions. NMMs were employed to test FC estimators like Transfer Entropy and Granger Causality in linear and nonlinear conditions. Results revealed that connectivity estimates reflect information transmission between brain regions, a quantity that can be significantly different from the connectivity strength, and that Granger causality outperforms the other estimators. A second objective of this thesis was to assess brain connectivity and network changes on EEG data reconstructed at the cortical level. Functional brain connectivity has been estimated through Granger Causality, in both temporal and spectral domains, with the following goals: a) detect task-dependent functional connectivity network changes, focusing on internal-external attention competition and fear conditioning and reversal; b) identify resting-state network alterations in a subclinical population with high autistic traits. Connectivity-based neuromarkers, compared to the canonical EEG analysis, can provide deeper insights into brain mechanisms and may drive future diagnostic methods and therapeutic interventions. However, further methodological studies are required to fully understand the accuracy and information captured by FC estimates, especially concerning nonlinear phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote sensing data are each time more available and can be used to monitor the vegetal development of main agricultural crops, such as the Arabic coffee in Brazil, since that the relationship between spectral and agronomical data be well known. Therefore, this work had the main objective to assess the use of Quickbird satellite images to estimate biophysical parameters of coffee crop. Test area was composed by 25 coffee fields located between the cities of Ribeirão Corrente, Franca and Cristais Paulista (SP), Brazil, and the biophysical parameters used were row and between plants spacing, plant height, LAI, canopy diameter, percentage of vegetation cover, roughness and biomass. Spectral data were the reflectance of four bands of QUICKBIRD and values of four vegetations indexes (NDVI, GVI, SAVI and RVI) based on the same satellite. All these data were analyzed using linear and nonlinear regression methods to generate estimation models of biophysical parameters. The use of regression models based on nonlinear equations was more appropriate to estimate parameters such as the LAI and the percentage of biomass, important to indicate the productivity of coffee crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic Barkhausen energy in the rolling and transversal directions of AISI/SAE 1070 annealed surfaces is studied. The measurements were made in the samples under applied tension in the elastic-plastic region for different angular directions. The outcomes evidence that the magnetic anisotropy coefficient can be used to characterize the linear and nonlinear elastic limits of the material tinder tensile tresses. The results also show that the area of the curve corresponding to the angular dependence of the number of Barkhausen jumps with average energy presents a maximum value that corresponds to the elastic limit of the sample. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical fiber microwires (OFMs) are nonlinear optical waveguides that support several spatial modes. The multimodal generalized nonlinear Schrodinger equation (MM-GNLSE) is deduced taking into account the linear and nonlinear modal coupling. A detailed theoretical description of four-wave mixing (FWM) considering the modal coupling is developed. Both, the intramode and the intermode phase-matching conditions is calculated for an optical microwire in a strong guiding regime. Finally, the FWM dynamics is studied and the amplitude evolution of the pump beams, the signal and the idler are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the optimization of complex-order algorithms for the discrete-time control of linear and nonlinear systems. The fundamentals of fractional systems and genetic algorithms are introduced. Based on these concepts, complexorder control schemes and their implementation are evaluated in the perspective of evolutionary optimization. The results demonstrate not only that complex-order derivatives constitute a valuable alternative for deriving control algorithms, but also the feasibility of the adopted optimization strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a novel method for visualizing the control systems behavior. The proposed scheme uses the tools of fractional calculus and computes the signals propagating within the system structure as a time/frequency-space wave. Linear and nonlinear closed-loop control systems are analyzed, for both the time and frequency responses, under the action of a reference step input signal. Several nonlinearities, namely, Coulomb friction and backlash, are also tested. The numerical experiments demonstrate the feasibility of the proposed methodology as a visualization tool and motivate its extension for other systems and classes of nonlinearities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last years, several studies have been made aiming to assess the out-of-plane seismic response of unreinforced stone masonry structures. This fact led to the development of a wide variety of models and approaches, ranging from simple kinematic based analytical models up to complex numerical simulations. Nevertheless, for the sake of simplicity, the out-of-plane seismic response of a masonry wall pier may be obtained by means of a simple single-degree-of-freedom system while still providing good results. In fact, despite the assumptions associated with such a simple formulation, it is also true that the epistemic uncertainty inherent with the selection of appropriate input parameters in more complex models may render them truly ineffective. In this framework, this paper focuses on the study of the out-of-plane bending of unreinforced stone masonry walls (cantilevers) by proposing a simplified analytical approach based on the construction of a linearized four-branch model, which is used to characterize the linear and nonlinear response of such structural elements through an overturning moment-rotation relationship. The formulation of the four-branch model is presented and described in detail and the meaningful parameters used for its construction are obtained from a set of experimental laboratory tests performed on six full-scale unreinforced regular sacco stone masonry specimens. Moreover, a parametric analysis aiming to evaluate the effect of these parameters’ variation on the final configuration of the model is presented and critically discussed. Finally, the results obtained from the application of the developed four-branch model on real unreinforced regular sacco stone masonry walls are thoroughly analysed and the main conclusions obtained from its application are summarized.