959 resultados para Light rail vehicles.
Resumo:
BACKGROUND: High-grade gliomas are aggressive, incurable tumors characterized by extensive diffuse invasion of the normal brain parenchyma. Novel therapies at best prolong survival; their costs are formidable and benefit is marginal. Economic restrictions thus require knowledge of the cost-effectiveness of treatments. Here, we show the cost-effectiveness of enhanced resections in malignant glioma surgery using a well-characterized tool for intraoperative tumor visualization, 5-aminolevulinic acid (5-ALA). OBJECTIVE: To evaluate the cost-effectiveness of 5-ALA fluorescence-guided neurosurgery compared with white-light surgery in adult patients with newly diagnosed high-grade glioma, adopting the perspective of the Portuguese National Health Service. METHODS: We used a Markov model (cohort simulation). Transition probabilities were estimated with the use of data from 1 randomized clinical trial and 1 noninterventional prospective study. Utility values and resource use were obtained from published literature and expert opinion. Unit costs were taken from official Portuguese reimbursement lists (2012 values). The health outcomes considered were quality-adjusted life-years, lifeyears, and progression-free life-years. Extensive 1-way and probabilistic sensitivity analyses were performed. RESULTS: The incremental cost-effectiveness ratios are below €10 000 in all evaluated outcomes, being around €9100 per quality-adjusted life-year gained, €6700 per life-year gained, and €8800 per progression-free life-year gained. The probability of 5-ALA fluorescence-guided surgery cost-effectiveness at a threshold of €20000 is 96.0% for quality-adjusted life-year, 99.6% for life-year, and 98.8% for progression-free life-year. CONCLUSION: 5-ALA fluorescence-guided surgery appears to be cost-effective in newly diagnosed high-grade gliomas compared with white-light surgery. This example demonstrates cost-effectiveness analyses for malignant glioma surgery to be feasible on the basis of existing data.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Civil
Resumo:
We compared, for Triatoma brasiliensis, the egg-laying process and the mortality of adults under conditions of almost permanent darkness and with normal laboratory luminosity. Mortality did not differ between groups. The egg-laying per vial and per female was significantly greater in the group of normal luminosity. We consider that it is not recommendable to keep the adults of this species under complete darkness. Other biological aspects should be analysed in relation to luminosity.
Resumo:
The present measures adopted to prevent transfusion-associated Chagas' disease include screening of blood donors. and/or the inactivation of T. cruzi in collected blood using gentian violet (GV) as a trypanocidal agent. In this study, we investigated the efficacy of the combined use of AMT and UV-A in inactirating T. cruzi in infected human platelet cuncentrates. Human platelet concentrates were infected with T. cruzi (2x10/ml) of the Y strain transfered to PL 269 (Fenwal Laboratories) containers and treated with GV (250řg,/ml). and ascorbic acid (1 mg/ml); GV. ascorbic acid and UV-A; GV and UV-A; AMT (40/tG/ml) and ascorbic acid; AMT, ascorbic acid and UV-A; AMT and UV-A; UV-A alone; and untreated (control). All UV-A treated platelet concentrates were exposed to UV-A doses of 24, 92, 184, 276, 368 and 644 kj/m². and the microscopical research of active T. cruzi was performed, using the microhematocrit technique, 1, 6 and 24 hours after each treatment. A high number of active forms of T. cruzi was observed in all condictions, except when GV was used as the trypanocidal agent, providing evidence of the failure of AMT and UV-A in inactivating T cruzi in infected human platelet concentrates.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
New emerging contaminants could represent a danger to the environment and Humanity with repercussions not yet known. One of the major worldwide pharmaceutical and personal care productions are antimicrobials products, triclosan, is an antimicrobial agent present in most products. Despite the high removal rate of triclosan present in wastewater treatments, triclosan levels are on the rise in the environment through disposal of wastewater effluent and use of sewage sludge in land application. Regulated in the EC/1272/2008 (annex VI, table 3.1), this compound is considered very toxic to aquatic life and it has been reported that photochemical transformation of triclosan produces dioxins. In the current work it was defined three objectives; determination of the most efficient process in triclosan degradation, recurring to photochemical degradation methods comparing different sources of light; identification of the main by-products formed during the degradation and the study of the influence of the Fenton and photo-Fenton reaction. Photochemical degradation methods such as: photocatalysis under florescent light (UV), photocatalysis under visible light (sunlight), photocatalysis under LEDs, photo-Fenton and Fenton reaction have been compared in this work. The degradation of triclosan was visualized through gas chromatography/mass spectrometry (GC/MS). In this study photo-Fenton reaction has successfully oxidized triclosan to H2O and CO2 without any by-products within 2 hours. Photocatalysis by titanium dioxide (TiO2) under LEDs was possible, having a degradation rate of 53% in an 8 hours essay. The degradation rate of the Fenton reaction, UV light and sunlight showed degradation between 90% and 95%. The results are reported to the data observed without statistic support, since this was not possible during the work period. Hydroquinone specie and 2,4-dichlorophenol by-products were identified in the first hour of photocatalysis by UV. A common compound, possibly identified has C7O4H , was present at the degradation by UV, sunlight and LEDs and was concluded to be a contaminant. In the future more studies in the use of LEDs should be undertaken given the advantages of long durability and low consumption of energy of these lamps and that due to their negative impact on the environment fluorescent lamps are being progressively made unavailable by governments, requiring new solutions to be found. Fenton and photo-Fenton reactions can also be costly processes given the expensive reagents used.
Resumo:
The present paper was prepared for the course “Project III”, with the supervision of Prof. António Moniz, reporting on the author speaking notes at the Winter School on Technology Assessment, 6-7 December 2010, as part of the Doctoral Programme on Technology Assessment at FCT-UNL.
Resumo:
The need for more efficient illumination systems has led to the proliferation of Solid-State Lighting (SSL) systems, which offer optimized power consumption. SSL systems are comprised of LED devices which are intrinsically fast devices and permit very fast light modulation. This, along with the congestion of the radio frequency spectrum has paved the path for the emergence of Visible Light Communication (VLC) systems. VLC uses free space to convey information by using light modulation. Notwithstanding, as VLC systems proliferate and cost competitiveness ensues, there are two important aspects to be considered. State-of-the-art VLC implementations use power demanding PAs, and thus it is important to investigate if regular, existent Switched-Mode Power Supply (SMPS) circuits can be adapted for VLC use. A 28 W buck regulator was implemented using a off-the-shelf LED Driver integrated circuit, using both series and parallel dimming techniques. Results show that optical clock frequencies up to 500 kHz are achievable without any major modification besides adequate component sizing. The use of an LED as a sensor was investigated, in a short-range, low-data-rate perspective. Results show successful communication in an LED-to-LED configuration, with enhanced range when using LED strings as sensors. Besides, LEDs present spectral selective sensitivity, which makes them good contenders for a multi-colour LED-to-LED system, such as in the use of RGB displays and lamps. Ultimately, the present work shows evidence that LEDs can be used as a dual-purpose device, enabling not only illumination, but also bi-directional data communication.
Resumo:
Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.
Resumo:
White Color tuning is an attractive feature that Organic Light Emitting Diodes (OLEDs) offer. Up until now, there hasn’t been any report that mix both color tuning abilities with device stability. In this work, White OLEDs (W-OLEDs) based on a single RGB blend composed of a blue emitting N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) doped with a green emitting Coumarin-153 and a red emitting 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM1) dyes were produced. The final device structure was ITO/Blend/Bathocuproine (BCP)/ Tris(8-hydroxyquinolinato)aluminium (Alq3)/Al with an emission area of 0.25 cm2. The effects of the changing in DCM1’s concentration (from 0.5% to 1% wt.) allowed a tuning in the final white color resulting in devices capable of emitting a wide range of tunes – from cool to warm – while also keeping a low device complexity and a high stabilitty. Moreover, an explanation on the optoelectrical behavior of the device is presented. The best electroluminescense (EL) points toward 160 cd/m2 of brightness and 1.1 cd/A of efficiency, both prompted to being enhanced. An Impedance Spectroscopy (IS) analysis allowed to study both the effects of BCP as a Hole Blocking Layer and as an aging probe of the device. Finally, as a proof of concept, the emission was increased 9 and 64 times proving this structure can be effectively applied for general lighting.
Resumo:
Objective: Nutritional labeling systems are considered a tool to fight obesity since they aim to contribute for more informed food choices as well as assist consumers to make healthier nutrition options and in this manner, contribute to a decrease in the obesity rate. This study intends to analyze the effect of different types of labeling systems on parents’ purchasing decisions for their children on a specific product: breakfast cereals. More precisely, how labels affect parents’ perception of healthiness regarding cereals and if the nutritional information has an effect on intended purchases for their children. Participants and methods: We conducted a study with 135 Portuguese parents of children aged 4 to12 years. Parents answered a questionnaire with one of three hypothetical cereals menus. Menus only differed in their nutritional labeling technique: no labels (control group), reference intake labels or traffic light labels. In addition, we conducted 20 face-to-face interviews to a different group of parents in order to perform a recall task. Findings: This paper provides no evidence to suggest that energy labeling or traffic light labeling systems alone were successful in helping parents making healthy purchases of cereals for their children. Therefore, there is the need to promote supplementary policies to encourage the consumption of healthier food and help fight obesity.
Resumo:
This paper presents an on-board bidirectional battery charger for Electric Vehicles (EVs), which operates in three different modes: Grid-to- Vehicle (G2V), Vehicle-to-Grid (V2G), and Vehicle-to-Home (V2H). Through these three operation modes, using bidirectional communications based on Information and Communication Technologies (ICT), it will be possible to exchange data between the EV driver and the future smart grids. This collaboration with the smart grids will strengthen the collective awareness systems, contributing to solve and organize issues related with energy resources and power grids. This paper presents the preliminary studies that results from a PhD work related with bidirectional battery chargers for EVs. Thus, in this paper is described the topology of the on-board bidirectional battery charger and the control algorithms for the three operation modes. To validate the topology it was developed a laboratory prototype, and were obtained experimental results for the three operation modes.