957 resultados para Light emitting diode
Resumo:
The work presented in this thesis examines the properties of BPEs of various configurations and under different operating conditions in a large planar LEC system. Detailed analysis of time-lapsed fluorescence images allows us to calculate the doping propagation speed from the BPEs. By introducing a linear array of BPEs or dispersed ITO particles, multiple light-emitting junctions or a bulk homojunction have been demonstrated. In conclusion, it has been observed that both applied bias voltages and sizes of BPEs affected the electrochemical doping from the BPE. If the applied bias voltage was initially not sufficiently high enough, a delay in appearance of doping from the BPE would take place. Experiments of parallel BPEs with different sizes (large, medium, small) demonstrate that the potential difference across the BPEs has played a vital role in doping initiation. Also, the p-doping propagation distance from medium-sized BPE has displayed an exponential growth over the time-span of 70 seconds. Experiments with a linear array of BPEs with the same size demonstrate that the doping propagation speed of each floating BPE was the same regardless of its position between the driving electrodes. Probing experiments under high driving voltages further demonstrated the potential of having a much more efficient light emission from an LEC with multiple BPEs.
Resumo:
We compare the optical properties and device performance of unpackaged InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) emitting at ∼430 nm grown simultaneously on a high-cost small-size bulk semipolar (11 2 - 2) GaN substrate (Bulk-GaN) and a low-cost large-size (11 2 - 2) GaN template created on patterned (10 1 - 2) r-plane sapphire substrate (PSS-GaN). The Bulk-GaN substrate has the threading dislocation density (TDD) of ∼ and basal-plane stacking fault (BSF) density of 0 cm-1, while the PSS-GaN substrate has the TDD of ∼2 × 108cm-2 and BSF density of ∼1 × 103cm-1. Despite an enhanced light extraction efficiency, the LED grown on PSS-GaN has two-times lower internal quantum efficiency than the LED grown on Bulk-GaN as determined by photoluminescence measurements. The LED grown on PSS-GaN substrate also has about two-times lower output power compared to the LED grown on Bulk-GaN substrate. This lower output power was attributed to the higher TDD and BSF density.
Resumo:
Solution-grown colloidal nanocrystal (NC) materials represent ideal candidates for optoelectronic devices, due to the flexibility with which they can be synthesized, the ease with which they can be processed for devicefabrication purposes and, foremost, for their excellent and size-dependent tunable optical properties, such as high photoluminescence (PL) quantum yield, color purity, and broad absorption spectra up to the near infrared. The advent of surfactant-assisted synthesis of thermodynamically stable colloidal solutions of NCs has led to peerless results in terms of uniform size distribution, composition, rational shape-design and the possibility of building heterostructured NCs (HNCs) comprising two or more different materials joined together. By tailoring the composition, shape and size of each component, HNCs with gradually higher levels of complexity have been conceived and realized, which are endowed with outstanding characteristics and optoelectronic properties. In this review, we discuss recent advances in the design of HNCs for efficient light-emitting diodes (LEDs) and photovoltaic (PV) solar cell devices. In particular, we will focus on the materials required to obtain superior optoelectronic quality and efficient devices, as well as their preparation and processing potential and limitations
Resumo:
Dissertação de mestrado, Aquacultura, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
This work reports on the growth of (In, Ga)N core−shell micro pillars by plasma-assisted molecular beam epitaxy using an ordered array of GaN cores grown by metal organic vapor phase epitaxy as a template. Upon (In, Ga)N growth, core−shell structures with emission at around 3.0 eV are formed. Further, the fabrication of a core−shell pin structure is demonstrated.
Resumo:
Freestanding semipolar (11–22) indium gallium nitride (InGaN) multiplequantum-well light-emitting diodes (LEDs) emitting at 445 nm have been realized by the use of laser lift-off (LLO) of the LEDs from a 50- m-thick GaN layer grown on a patterned (10–12) r -plane sapphire substrate (PSS). The GaN grooves originating from the growth on PSS were removed by chemical mechanical polishing. The 300 m × 300 m LEDs showed a turn-on voltage of 3.6 V and an output power through the smooth substrate of 0.87 mW at 20 mA. The electroluminescence spectrum of LEDs before and after LLO showed a stronger emission intensity along the [11–23]InGaN/GaN direction. The polarization anisotropy is independent of the GaN grooves, with a measured value of 0.14. The bandwidth of the LEDs is in excess of 150 MHz at 20 mA, and back-to-back transmission of 300 Mbps is demonstrated, making these devices suitable for visible light communication (VLC) applications.
Resumo:
Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at higher operating temperatures between 100oC to 250oC. The response of the WO3 sensor to NH3, CH4 and Acetaldehyde at lower temperatures (50oC-100oC) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). The WO3 with Fe (WO3:Fe) was found to show some response to Acetaldehyde gas only at relatively higher operating temperature (250oC) and gas concentration of 10 ppm.
Resumo:
Presbyopia affects individuals from the age of 45 years onwards, resulting in difficulty in accurately focusing on near objects. There are many optical corrections available including spectacles or contact lenses that are designed to enable presbyopes to see clearly at both far and near distances. However, presbyopic vision corrections also disturb aspects of visual function under certain circumstances. The impact of these changes on activities of daily living such as driving are, however, poorly understood. Therefore, the aim of this study was to determine which aspects of driving performance might be affected by wearing different types of presbyopic vision corrections. In order to achieve this aim, three experiments were undertaken. The first experiment involved administration of a questionnaire to compare the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections. The questionnaire was developed and piloted, and included a series of items regarding difficulties experienced while driving under day and night-time conditions. Two hundred and fifty five presbyopic patients responded to the questionnaire and were categorised into five groups, including those wearing no vision correction for driving (n = 50), bifocal spectacles (BIF, n = 54), progressive addition lenses spectacles (PAL, n = 50), monovision (MV, n = 53) and multifocal contact lenses (MTF CL, n = 48). Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, MV and MTF CL wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly with regard to disturbances from glare and haloes. Progressive addition lens wearers noticed more distortion of peripheral vision, while BIF wearers reported more difficulties with tasks requiring changes in focus and those who wore no vision correction for driving reported problems with intermediate and near tasks. Overall, the mean level of satisfaction for daytime driving was quite high for all of the groups (over 80%), with the BIF wearers being the least satisfied with their vision for driving. Conversely, at night, MTF CL wearers expressed the least satisfaction. Research into eye and head movements has become increasingly of interest in driving research as it provides a means of understanding how the driver responds to visual stimuli in traffic. Previous studies have found that wearing PAL can affect eye and head movement performance resulting in slower eye movement velocities and longer times to stabilize the gaze for fixation. These changes in eye and head movement patterns may have implications for driving safety, given that the visual tasks for driving include a range of dynamic search tasks. Therefore, the second study was designed to investigate the influence of different presbyopic corrections on driving-related eye and head movements under standardized laboratory-based conditions. Twenty presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision reading spectacles, were recruited. Each participant wore five different types of vision correction: single vision distance lenses (SV), PAL, BIF, MV and MTF CL. For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle and identify a series of peripherally presented targets while their eye and head movements were recorded using the faceLAB® eye and head tracking system. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). The results demonstrated that the path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL. The path length of head movements was greater with SV, BIF and PAL than MV and MTF CL. Target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze, regardless of vision correction type. The third experiment aimed to investigate the real world driving performance of presbyopes while wearing different vision corrections measured on a closed-road circuit at night-time. Eye movements were recorded using the ASL Mobile Eye, eye tracking system (as the faceLAB® system proved to be impractical for use outside of the laboratory). Eleven participants (mean age: 57.25 ± 5.78 years) were fitted with four types of prescribed vision corrections (SV, PAL, MV and MTF CL). The measures of driving performance on the closed-road circuit included distance to sign recognition, near target recognition, peripheral light-emitting-diode (LED) recognition, low contrast road hazards recognition and avoidance, recognition of all the road signs, time to complete the course, and driving behaviours such as braking, accelerating, and cornering. The results demonstrated that driving performance at night was most affected by MTF CL compared to PAL, resulting in shorter distances to read signs, slower driving speeds, and longer times spent fixating road signs. Monovision resulted in worse performance in the task of distance to read a signs compared to SV and PAL. The SV condition resulted in significantly more errors made in interpreting information from in-vehicle devices, despite spending longer time fixating on these devices. Progressive addition lenses were ranked as the most preferred vision correction, while MTF CL were the least preferred vision correction for night-time driving. This thesis addressed the research question of how presbyopic vision corrections affect driving performance and the results of the three experiments demonstrated that the different types of presbyopic vision corrections (e.g. BIF, PAL, MV and MTF CL) can affect driving performance in different ways. Distance-related driving tasks showed reduced performance with MV and MTF CL, while tasks which involved viewing in-vehicle devices were significantly hampered by wearing SV corrections. Wearing spectacles such as SV, BIF and PAL induced greater eye and head movements in the simulated driving condition, however this did not directly translate to impaired performance on the closed- road circuit tasks. These findings are important for understanding the influence of presbyopic vision corrections on vision under real world driving conditions. They will also assist the eye care practitioner to understand and convey to patients the potential driving difficulties associated with wearing certain types of presbyopic vision corrections and accordingly to support them in the process of matching patients to optical corrections which meet their visual needs.
Resumo:
Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at operating temperatures between 100 degrees celcius to 250 degrees celcius. The iron doped Tungsten Oxide sensor (WO3:Fe) showed some response to Acetaldehyde gas at relatively higher operating temperature (250 degrees celcius) and gas concentration of 10 ppm. The sensitivity of the WO3 sensor towards NH3, CH4 and Acetaldehyde at lower operating temperatures (50 degrees celcius - 100 degrees celcius) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). From the results, photo-activated WO3 thin film that operates at room temperature appeared to be a promising gas sensor. The overall results indicated that the WO3 sensor exhibited reproducibility for the detection of various gases and the WO3:Fe indicated some response towards Acetaldehyde gas.
Resumo:
This project addresses the viability of lightweight, low power consumption, flexible, large format LED screens. The investigation encompasses all aspects of the electrical and mechanical design, individually and as a system, and achieves a successful full scale prototype. The prototype implements novel techniques to achieve large displacement colour aliasing, a purely passive thermal management solution, a rapid deployment system, individual seven bit LED current control with two way display communication, auto-configuration and complete signal redundancy, all of which are in direct response to industry needs.
Resumo:
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.
Resumo:
Pure phase Cu2ZnSnS4 (CZTS) nanoparticles were successfully synthesized via polyacrylic acid (PAA) assisted one-pot hydrothermal route. The morphology, crystal structure, composition and optical properties as well as the photoactivity of the as-synthesized CZTS nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectrometer, UV-visible absorption spectroscopy and photoelectrochemical measurement. The influence of various synthetic conditions, such as the reaction temperature, reaction duration and the amount of PAA in the precursor solution on the formation of CZTS compound was systematically investigated. The results have shown that the crystal phase, morphology and particle size of CZTS can be tailored by controlling the reaction conditions. The formation mechanism of CZTS in the hydrothermal reaction has been proposed based on the investigation of time-dependent phase evolution of CZTS which showed that metal sulfides (e.g., Cu2S, SnS2 and ZnS) were formed firstly during the hydrothermal reaction before forming CZTS compound through nucleation. The band gap of the as-synthesized CZTS nanoparticles is 1.49 eV. The thin film electrode based on the synthesized CZTS nanoparticles in a three-electrode photoelectrochemical cell generated pronounced photocurrent under illumination provided by a red light-emitting diode (LED, 627 nm), indicating the photoactivity of the semiconductor material.
Resumo:
Vertical windows are the most common and simplest method to introduce daylight to interior spaces of office buildings, while also providing a view and connection to the outside. However, high contrast ratios between windows and surrounding surfaces can cause visual discomfort for occupants and can negatively influence their health and productivity. Consequently, building occupants may try to adapt their working environment through closing blinds and turning on lights in order to improve indoor visual comfort. Such interventions defeat the purpose of daylight harvesting systems and can increase the forecast electric lighting consumption in buildings that include such systems. A simple strategy to prevent these problematic consequences is to reduce the luminance contrasts presented by the window wall by increasing the luminance of areas surrounding the window through the sparing use of energy-efficient supplementary lighting, such light emitting diodes (LEDs). This paper presents the result of a pilot study in typical office in Brisbane, Australia that tests the effectiveness of a supplementary LED lighting system. The study shows an improvement in the appraisal of the visual environment is achieved using the supplementary system, along with up to 88% reductions in luminance contrast at the window wall. Also observed is a 36% reduction in the likelihood of user interventions that would increase energy usage. These results are used as the basis of an annual energy simulation of the test office and indicate that supplementary systems could be used to save energy beyond what is typically realised in side lit office spaces.
Resumo:
High contrast ratios between windows and surrounding surfaces could cause reduced visibility or discomfort for occupants. Consequently, building users may choose to intervene in lighting conditions through closing blinds and turning on the lamps in order to enhance indoor visual comfort. Such interventions increase projected electric lighting use in buildings. One simple method to prevent these problematic issues is increasing the luminance of the areas surrounding to the bright surface of windows through the use of energy-efficient supplementary lighting, such Light Emitting Diodes (LEDs). This paper reports on the results of a pilot study in conventional office in Brisbane, Australia. The outcomes of this study indicated that a supplementary LED system of approximately 18 W could reduce the luminance contrast on the window wall from values in the order of 117:1 to 33:1. In addition, the results of this experiment suggested that this supplementary strategy could increase the subjective scale appraisal of window appearance by approximately 33%, as well as reducing the likelihood of users’ intention to turn on the ceiling lights by about 27%. It could also diminish the likelihood of occupants’ intention to move the blind down by more than 90%.
Resumo:
A high contrast ratio between windows and surrounding walls may lead to office workers visual discomfort that could negatively affect their satisfaction and productivity. Consequently, occupants may try to adapt their working environment by closing blinds and/ or turning on the lights to enhance indoor visual comfort, which can reduce predicted energy savings. The hypothesis of this study is that reducing luminance contrast ratio on the window wall will improve window appearance which potentially will reduce visual discomfort and decrease workers interventions. Thus, this PhD research proposes a simple strategy to diminish the luminance contrast on the window wall by increasing the luminance of the areas surrounding the windows using supplementary light emitting diode (LED) systems. To test the hypothesis, this investigation will involve three experiments in different office layouts with various window types and orientations in Brisbane, Australia. It will assess user preferences for different luminance patterns in windowed offices featuring flexible, lowpower LED lighting installations that allows multiple lighting design options on the window wall. Detailed luminance and illuminance measures will be used to match quantitative lighting design assessment to user preferences.