969 resultados para Lie algebras.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La classificazione delle algebre di Lie semplici di dimensione finita su un campo algebricamente chiuso si divide in due parti: le algebre di Lie classiche e quelle eccezionali. La differenza principale è che le algebre di Lie classiche vengono introdotte come algebre di matrici, quelle eccezionali invece non si presentano come algebre di matrici ma un modo di introdurle è attraverso il loro diagramma di Dynkin. Lo scopo della tesi è di realizzare l' algebra di Lie eccezionale di tipo G_2 come algebra di matrici. Per raggiungere tale scopo viene introdotta un' algebra di composizione: la cosiddetta algebra degli ottonioni. Quest'ultima viene costruita in due modi diversi: come spazio vettoriale sui reali con un prodotto bilineare e come insieme delle coppie ordinate di quaternioni. Il resto della tesi è dedicato all' algebra delle derivazioni degli ottonioni. Viene dimostrato che questa è un' algebra di Lie semisemplice di dimensione 14. Infine, considerando la complessificazione dell'algebra delle derivazioni degli ottonioni, viene dimostrato che quest'ultima è semplice e quindi isomorfa a G_2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesi in algebra che propone uno studio parallelo di risolubilità e nilpotenza nei gruppi e nelle algebre di Lie. Vengono descritte dapprima le algebre di Lie in modo da fornire una conoscenza preliminare riguardo a questa struttura algebrica. In seguito esse vengono messe a confronto con i gruppi sotto l'aspetto appunto di risolubilità e nilpotenza.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A uniform algebra A on its Shilov boundary X is maximal if A is not C(X) and no uniform algebra is strictly contained between A and C(X) . It is essentially pervasive if A is dense in C(F) whenever F is a proper closed subset of the essential set of A. If A is maximal, then it is essentially pervasive and proper. We explore the gap between these two concepts. We show: (1) If A is pervasive and proper, and has a nonconstant unimodular element, then A contains an infinite descending chain of pervasive subalgebras on X . (2) It is possible to find a compact Hausdorff space X such that there is an isomorphic copy of the lattice of all subsets of N in the family of pervasive subalgebras of C(X). (3) In the other direction, if A is strongly logmodular, proper and pervasive, then it is maximal. (4) This fails if the word “strongly” is removed. We discuss examples involving Dirichlet algebras, A(U) algebras, Douglas algebras, and subalgebras of H∞(D), and develop new results that relate pervasiveness, maximality, and relative maximality to support sets of representing measures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vatne [13] and Green and Marcos [9] have independently studied the Koszul-like homological properties of graded algebras that have defining relations in degree 2 and exactly one other degree. We contrast these two approaches, answer two questions posed by Green and Marcos, and find conditions that imply the corresponding Yoneda algebras are generated in the lowest possible degrees.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: