798 resultados para Lens distortion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertebrate lens is a tissue composed of terminally differentiated fiber cells and anterior lens epithelial cells. The abundant, preferential expression of the soluble proteins called crystallins creates a transparent, refractive index gradient in the lens. Several transcription factors such as Pax6, Sox1, and L-Maf have been shown to regulate lens development. Here we show that mice lacking the transcription factor c-Maf are microphthalmic secondary to defective lens formation, specifically from the failure of posterior lens fiber elongation. The marked impairment of crystallin gene expression observed is likely explained by the ability of c-Maf to transactivate the crystallin gene promoter. Thus, c-Maf is required for the differentiation of the vertebrate lens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using molecular dynamics simulations, we have examined the binding of a hexaNAG substrate and two potential hydrolysis intermediates (an oxazoline ion and an oxocarbenium ion) to a family 19 barley chitinase. We find the hexaNAG substrate binds with all sugars in a chair conformation, unlike the family 18 chitinase which causes substrate distortion. Glu 67 is in a position to protonate the anomeric oxygen linking sugar residues D and E whereas Asn 199 serves to hydrogen bond with the C2′ N-acetyl group of sugar D, thus preventing the formation of an oxazoline ion intermediate. In addition, Glu 89 is part of a flexible loop region allowing a conformational change to occur within the active site to bring the oxocarbenium ion intermediate and Glu 89 closer by 4–5 Å. A hydrolysis product with inversion of the anomeric configuration occurs because of nucleophilic attack by a water molecule that is coordinated by Glu 89 and Ser 120. Issues important for the design of inhibitors specific to family 19 chitinases over family 18 chitinases also are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of inhomogeneous, weakly nonlinear waves is considered in a cochlear model having two degrees of freedom that represent the transverse motions of the tectorial and basilar membranes within the organ of Corti. It is assumed that nonlinearity arises from the saturation of outer hair cell active force generation. I use multiple scale asymptotics and treat nonlinearity as a correction to a linear hydroelastic wave. The resulting theory is used to explain experimentally observed features of the response of the cochlear partition to a pure tone, including: the amplification of the response in a healthy cochlea vs a dead one; the less than linear growth rate of the response to increasing sound pressure level; and the amount of distortion to be expected at high and low frequencies at basal and apical locations, respectively. I also show that the outer hair cell nonlinearity generates retrograde waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In urodele amphibians, lens induction during development and regeneration occurs through different pathways. During development, the lens is induced from the mutual interaction of the ectoderm and the optic vesicle, whereas after lentectomy the lens is regenerated through the transdifferentiation of the iris-pigmented epithelial cells. Given the known role of fibroblast growth factors (FGFs) during lens development, we examined whether or not the expression and the effects of exogenous FGF during urodele lens regeneration were conserved. In this paper, we describe expression of FGF-1 and its receptors, FGFR-2 (KGFR and bek variants) and FGFR-3, in newts during lens regeneration. Expression of these genes was readily observed in the dedifferentiating pigmented epithelial cells, and the levels of expression were high in the lens epithelium and the differentiating fibers and lower in the retina. These patterns of expression implied involvement of FGFs in lens regeneration. To further elucidate this function, we examined the effects of exogenous FGF-1 and FGF-4 during lens regeneration. FGF-1 or FGF-4 treatment in lentectomized eyes resulted in the induction of abnormalities reminiscent to the ones induced during lens development in transgenic mice. Effects included transformation of epithelial cells to fiber cells, double lens regeneration, and lenses with abnormal polarity. These results establish that FGF molecules are key factors in fiber differentiation, polarity, and morphogenesis of the lens during regeneration even though the regenerating lens is induced by a different mechanism than in lens development. In this sense, FGF function in lens regeneration and development should be regarded as conserved. Such conservation should help elucidate the mechanisms of lens regeneration in urodeles and its absence in higher vertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription from the middle promoter, Pm, of phage Mu is initiated by Escherichia coli RNA polymerase holoenzyme (E sigma 70; RNAP) and the phage-encoded activator, Mor. Point mutations in the spacer region between the -10 hexamer and the Mor binding site result in changes of promoter activity in vivo. These mutations are located at the junction between a rigid T-tract and adjacent, potentially deformable G + C-rich DNA segment, suggesting that deformation of the spacer region may play a role in the transcriptional activation of Pm. This prediction was tested by using dimethyl sulfate and potassium permanganate footprinting analyses. Helical distortion involving strand separation was detected at positions -32 to -34, close to the predicted interface between Mor and RNAP. Promoter mutants in which this distortion was not detected exhibited a lack of melting in the -12 to -1 region and reduced promoter activity in vivo. We propose that complexes containing the distortion represent stressed intermediates rather than stable open complexes and thus can be envisaged as a transition state in the kinetic pathway of Pm activation in which stored torsional energy could be used to facilitate melting around the transcription start point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap junction channels are formed by paired oligomeric membrane hemichannels called connexons, which are composed of proteins of the connexin family. Experiments with transfected cell lines and paired Xenopus oocytes have demonstrated that heterotypic intercellular channels which are formed by two connexons, each composed of a different connexin, can selectively occur. Studies by Stauffer [Stauffer, K. A. (1995) J. Biol. Chem. 270, 6768-6772] have shown that recombinant Cx26 and Cx32 coinfected into insect cells may form heteromeric connexons. By solubilizing and subfractionating individual connexons from ovine lenses, we show by immunoprecipitation that connexons can contain two different connexins forming heteromeric assemblies in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A genetic approach has been established that combines the advantages of blastocyst complementation with the experimental attributes of the developing lens for the functional analysis of genes governing cellular proliferation, terminal differentiation, and apoptosis. This lens complementation system (LCS) makes use of a mutant mouse strain, aphakia (ak), homozygotes of which fail to develop an ocular lens. We demonstrate that microinjection of wild-type embryonic stem (ES) cells into ak/ak blastocysts produces chimeras with normal ES-cell-derived lenses and that microinjection of Rb-/- ES cells generates an aberrant lens phenotype identical to that obtained through conventional gene targeting methodology. Our determination that a cell autonomous defect underlies the aphakia condition assures that lenses generated through LCS are necessarily ES-cell-derived. LCS provides for the rapid phenotypic analysis of loss-of-function mutations, circumvents the need for germ-line transmission of null alleles, and, most significantly, facilitates the study of essential genes whose inactivation is associated with early lethal phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied liquid-liquid phase separation in aqueous ternary solutions of calf lens gamma-crystallin proteins. Specifically, we have examined two ternary systems containing gamma s--namely, gamma IVa with gamma s in water and gamma II with gamma s in water. For each system, the phase-separation temperatures (Tph (phi)) alpha as a function of the overall protein volume fraction phi at various fixed compositions alpha (the "cloud-point curves") were measured. For the gamma IVa, gamma s, and water ternary solution, a binodal curve composed of pairs of coexisting points, (phi I, alpha 1) and (phi II, alpha II), at a fixed temperature (20 degrees C) was also determined. We observe that on the cloud-point curve the critical point is at a higher volume fraction than the maximum phase-separation temperature point. We also find that typically the difference in composition between the coexisting phases is at least as significant as the difference in volume fraction. We show that the asymmetric shape of the cloud-point curve is a consequence of this significant composition difference. Our observation that the phase-separation temperature of the mixtures in the high volume fraction region is strongly suppressed suggests that gamma s-crystallin may play an important role in maintaining the transparency of the lens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If deprived of wild-type p53 function, the body loses a guardian that protects against cancer. Restoration of p53 function has, therefore, been proposed as a means of counteracting oncogenesis. This concept of therapy requires prior knowledge with regard to proper balance of p53 function in a given target tissue. We have addressed this problem by targeting expression of the wild-type human p53 gene to the lens, a tissue entirely composed of epithelial cells that differentiate into elongated fiber cells. Transgenic mice expressing wild-type human p53 develop microphthalmia as a result of a defect in fiber formation that sets in shortly after birth. We see apoptotic cells that fail to undergo proper differentiation. In an effort to directly link the observed lens phenotype to the activity of the wild-type human p53 transgene, we also generated mice expressing a mutant human p53 allele that lacks wild-type function. A normal lens phenotype is restored in double transgenic animals that carry both wild-type and mutant human p53 alleles. Our study highlights the difficulties that can arise if p53 levels are improperly balanced in a differentiating tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regeneration of eye tissues, such as lens, seen in some urodeles involves dedifferentiation of the dorsal pigmented epithelium and subsequent differentiation to lens cells. Such spatial regulation implies possible action of genes known to be specific for particular cell lineages and/or axis. Hox genes have been the best examples of genes for such actions. We have, therefore, investigated the possibility that such genes are expressed during lens regeneration in the newt. The pax-6 gene (a gene that contains a homeobox and a paired box) has been implicated in the development of the eye and lens determination in various species ranging from Drosophila to human and, because of these properties, could be instrumental in the regeneration of the urodele eye tissues as well. We present data showing that pax-6 transcripts are present in the developing and the regenerating eye tissues. Furthermore, expression in eye tissues, such as in retina, declines when a urodele not capable of lens regeneration (axolotl) surpasses the embryonic stages. Such a decline is not seen in adult newts capable of lens regeneration. This might indicate a vital role of pax-6 in newt lens regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pax-6 is essential for normal eye development and has been implicated as a "master gene" for lens formation in embryogenesis. Guinea pig zeta-crystallin, a taxon-specific enzyme crystallin, achieves high expression specifically in lens through use of an alternative promoter. Here we show that Pax-6 binds a site in this promoter, which is essential for lens-specific expression. Lens and lens-derived cells exhibit a tissue-specific pattern of alternative splicing of Pax-6 transcripts and Pax-6 is expressed in adult lenses and cells that support zeta-crystallin expression. These results suggest that zeta-crystallin is a natural target gene for Pax-6 and that this Pax family member has a direct role in the continuing expression of tissue-specific genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abundance of delta-crystallin in the chicken eye lens provides an advantageous marker for tissue-specific gene expression during cellular differentiation. The lens-specific expression of the delta 1-crystallin gene is governed by an enhancer in the third intron, which binds a positive (delta EF2) and negative (delta EF1) factor in its core region. Here we show by DNase I footprinting, electrophoretic mobility-shift assays, and cotransfection experiments with the delta 1-promoter/enhancer fused to the chloramphenicol acetyltransferase reporter gene that the delta 1-crystallin enhancer has two adjacent functional Pax-6 binding sites. We also demonstrate by DNase I footprinting that the delta EF1 site can bind the transcription factor USF, raising the possibility that USF may cooperate with Pax-6 in activation of the chicken delta 1- and alpha A-crystallin genes. These data, coupled with our recent demonstration that Pax-6 activates the alpha A-crystallin gene, suggest that Pax-6 may have been used extensively throughout evolution to recruit and express crystallin genes in the lens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fresnel lenses and other faceted or micro-optic devices are increasingly used in multiple applications like solar light concentrators and illumination devices, just to name some representative. However, it seems to be a certain lack of adequate techniques for the assessment of the performance of final fabricated devices. As applications are more exigent this characterization is a must. We provide a technique to characterize the performance of Fresnel lenses, as light collection devices. The basis for the method is a configuration where a camera images the Fresnel lens aperture. The entrance pupil of the camera is situated at the focal spot or the conjugate of a simulated solar source. In this manner, detailed maps of the performance of different Fresnel lenses are obtained for different acceptance angles.