970 resultados para Laser Dye Rhodamine B
Resumo:
We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1) achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators) AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.
Resumo:
Due to font problem on the tilte field the titlte of the thesis is corrected here. The title of the thesis is: <b>Superconducting properties and their enhancement in ReBa
Resumo:
O presente trabalho investiga a degradação fotoeletrocatalítica do corante Azul Básico 41 (AB 41) amplamente utilizado na tintura de fibras sintéticas, utilizando um semicondutor Ti/TiO2 como fotoanodo. 100% de degradação foi obtida após 60 min de tratamento de 8,33x10-5 mol L-1 do corante em 0,1 mol L−1 Na2SO4, pH 2 sob densidade de corrente de 0,40 mA cm−2 e irradiação UV. Ainda foi obtido 80% de remoção de carbono orgânico total, cuja oxidação segue uma reação de pseudo-primeira ordem com constante de velocidade inicial de -0,040 mim-1 e uma eficiência de corrente de 51%. Os resultados são superiores á fotocatálise convencional nas mesmas condições sem a polarização do fotoanodo que leva a 65% de mineralização sob constante de velocidade de -0,024 mim-1.
Resumo:
It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.
Resumo:
Tässä tutkimuksessa selvitetään ilman hitsauslisäainetta tapahtuvan laser–TIG–hybridihitsausprosessin soveltuvuus 6 mm ja 8 mm paksujen päittäisliitettyjen S355 K2 ja Laser 355 MC rakenneterästen hitsaukseen. Hitsien tarkastelussa huomio kiinnitetään hitsausnopeuteen, hitsien tunkeumaan, liittämistehokkuuteen, hitsien kovuuteen ja hitsausliitoksen ulkonäköön. Muita tutkittavia asioita ovat laser-TIG-hybridihitsattujen levyjen muodonmuutokset ja suuresta hitsausnopeudesta sekä pienestä t8/5 jäähtymisajasta johtuvat mahdolliset kylmähalkeamat. Laser-TIG-hybridihitsejä verrataan robotti-MAG- ja käsin MAG-hitseihin sekä kaarihitsausstandardin SFS-EN ISO 5817 hitsiluokkien mukaisiin raja-arvoihin. Laser-TIG-hybridihitsausprosessissa TIG-valokaari mahdollistaa tasaisen ja lähes roiskeettoman hitsin ja lasersäde aikaansaa syvän tunkeuman sekä tasalaatuisen juurihitsin. Laser-TIG-hybridihitsausprosessilla 6 mm paksut S355 K2 rakenneteräslevyt on mahdollista hitsata levyn yhdeltä puolelta kerralla valmiiksi. Paksummat 8 mm levyt voidaan hitsata levyn yhdeltä tai molemmilta puolilta suoritettavalla laser-TIG-hybridihitsauksella. Laser-TIG-hybridihitsausprosessilla hitsatut hitsit ovat hyvin siistejä ja lähes roiskeettomia. Verrattaessa laser-TIG-hybridihitsausprosessia muihin hitsausprosesseihin sen voidaan todeta olevan erittäin kilpailukykyinen 6 mm paksujen päittäisliitettyjen rakenneterästen hitsaamisessa, mutta se soveltuu myös 8 mm paksujen rakenneterästen hitsaamiseen. Tutkitut hitsit täyttävät kaarihitsausstandardin SFS-EN ISO 5817 B- ja D-hitsiluokkien mukaiset raja-arvot. Vertailukokeet 6 mm paksulla S355 rakenneteräksellä osoittavat, että yhdeltä puolelta suoritettavan laser-TIG-hybridihitsauksen hitsausnopeus on robotti-MAG-hitsaukseen verrattuna yli nelinkertainen ja MAG-käsinhitsaukseen verrattuna yli viisinkertainen. Laser-TIG-hybridihitsauksessa liittämistehokkuus on noin viisinkertainen robotti-MAGhitsaukseen verrattuna. Molemmilta puolilta suoritettavalla laser-TIG-hybridihitsauksella voidaan 8 mm paksulla S355 rakenneteräksellä saavuttaa noin kolminkertainen hitsausnopeus ja liittämistehokkuus robotti-MAG-hitsaukseen verrattuna. Laser-TIG-hybridihitsauksessa TIG-kaaren tuoman lisälämmön ansiosta suurillakin hitsausnopeuksilla (1 m/min) voidaan saavuttaa edulliset kovuusarvot. Kovuusmittausten tulosten perusteella 6 mm ja 8 mm paksujen S355 K2 ja Laser 355 MC rakenneterästen hitsit eivät ylittäneet kaarihitsausstandardin määrittelemää 350 HV kovuuden enimmäisrajaa. Laser-TIG-hybridihitsauksen edullisesta lämmöntuonnista johtuen levyjen pituus- ja poikittaissuuntaiset muodonmuutokset ovat noin 80 prosenttia pienemmät kuin käsin suoritettavassa MAG-hitsauksessa. Laser-TIG-hybridihitsausprosessilla käytetään I-railoa, mutta robotti-MAG- ja käsin MAG-hitsausprosesseilla joudutaan käyttämään V-railoa, jolloin lämmöntuonti ja siitä johtuvat muodonmuutokset ovat suuremmat. Korkea liittämistehokkuus ja edullinen lämmöntuonti merkitsevät vähäisempiä muodonmuutoksia ja siten merkittäviä säästöjä työ-, materiaali- ja energiakustannuksissa. 8 mm ja sitä paksummilla S355 rakenneteräksillä levyn yhdeltä puolelta suoritettava päittäisliitoksen hitsaaminen on laser-TIG hybridihitsauksella haastavaa, koska yli 200 A:n TIG-kaarivirralla suuri metallisula aiheuttaa avaimenreiän sulkeutumisen ja avaimenreiän alaosaan muodostuu kaasukuplia. Tästä voidaan tehdä sellainen johtopäätös, että päittäisliitettävien levyjen ilmarakoa pitäisi kasvattaa niin suureksi, että avaimenreiän sulavirtaus ei pääse estymään. Yli 0,25 mm:n ilmarako edellyttää lasersäteen vaaputusta tai säteen halkaisijan kasvattamista. Ilmaraon kasvattaminen edellyttää myös lisäaineen käyttöä. Tutkimustulosten perusteella laser-TIG-hybridihitsausprosessilla voidaan saavuttaa merkittäviä etuja ja kustannussäästöjä, joten sen hyödyntämistä kannattaa harkita 8 mm ja sitä ohuempien päittäisliitettävien tuotteiden konepaja- ja tehdastuotannossa. Laser-TIGhybridihitsausprosessi soveltuu esimerkiksi seuraavien tuotteiden hitsaamiseen: päittäisliitettävät levyt, palkit, koneenosat, putket, säiliöt ja erilaiset pyörähdyskappaleet.
Resumo:
In this communication we review the results obtained with the confocal laser scanning microscope to characterize the interaction of epimastigote and trypomastigote forms of Trypanosoma cruzi and tachyzoites of Toxoplasma gondii with host cells. Early events of the interaction process were studied by the simultaneous localization of sites of protein phosphorylation, revealed by immunocytochemistry, and sites of actin assembly, revealed by the use of labeled phaloidin. The results obtained show that proteins localized in the interaction sites are phosphorylated. The process of formation of the parasitophorous vacuole was monitored by labeling the host cell surface with fluorescent probes for lipids (PKH26), proteins (DTAF) and sialic acid (FITC-thiosemicarbazide) before interaction with the parasites. Evidence was obtained indicating transfer of components of the host cell surface to the parasite surface in the beginning of the interaction process. We also analyzed the distribution of cytoskeletal structures (microtubules and microfilaments visualized with specific antibodies), mitochondria (visualized with rhodamine 123), the Golgi complex (visualized with C6-NBD-ceramide) and the endoplasmic reticulum (visualized with anti-reticulin antibodies and DIOC6) during the evolution of intracellular parasitism. The results obtained show that some, but not all, structures change their position during evolution of the intracellular parasitism.
Resumo:
Angiotensin II (Ang II) plays a crucial role in the pathogenesis of renal diseases. The objective of the present study was to investigate the possible inflammatory effect of Ang II on glomerular endothelial cells and the underlying mechanism. We isolated and characterized primary cultures of rat glomerular endothelial cells (GECs) and observed that Ang II induced the synthesis of monocyte chemoattractant protein-1 (MCP-1) in GECs as demonstrated by Western blot. Ang II stimulation, at concentrations ranging from 0.1 to 10 µm, of rat GECs induced a rapid increase in the generation of reactive oxygen species as indicated by laser fluoroscopy. The level of p47phox protein, an NAD(P)H oxidase subunit, was also increased by Ang II treatment. These effects of Ang II on GECs were all reduced by diphenyleneiodonium (1.0 µm), an NAD(P)H oxidase inhibitor. Ang II stimulation also promoted the activation of nuclear factor-kappa B (NF-κB). Telmisartan (1.0 µm), an AT1 receptor blocker, blocked all the effects of Ang II on rat GECs. These data suggest that the inhibition of NAD(P)H oxidase-dependent NF-κB signaling reduces the increase in MCP-1 production by GECs induced by Ang II. This may provide a mechanistic basis for the benefits of selective AT1 blockade in dealing with chronic renal disease.
Resumo:
The objective of the present study was to develop a quantitative method to evaluate laser-induced choroidal neovascularization (CNV) in a rat model using Heidelberg Retina Angiograph 2 (HRA2) imaging. The expression of two heparan sulfate proteoglycans (HSPG) related to inflammation and angiogenesis was also investigated. CNV lesions were induced with argon laser in 21 heterozygous Zucker rats and after three weeks a fluorescein angiogram and autofluorescence exams were performed using HRA2. The area and greatest linear dimension were measured by two observers not aware of the protocol. Bland-Altman plots showed agreement between the observers, suggesting that the technique was reproducible. After fluorescein angiogram, HSPG (perlecan and syndecan-4) were analyzed by real-time RT-PCR and immunohistochemistry. There was a significant increase in the expression of perlecan and syndecan-4 (P < 0.0001) in retinas bearing CNV lesions compared to control retinas. The expression of these two HSPG increased with increasing CNV area. Immunohistochemistry demonstrated that the rat retina damaged with laser shots presented increased expression of perlecan and syndecan-4. Moreover, we observed that the overexpression occurred in the outer layer of the retina, which is related to choroidal damage. It was possible to develop a standardized quantitative method to evaluate CNV in a rat model using HRA2. In addition, we presented data indicating that the expression of HSPG parallels the area of CNV lesion. The understanding of these events offers opportunities for studies of new therapeutic interventions targeting these HSPG.
Resumo:
Holographic technology is at the dawn of quick evolution in various new areas including holographic data storage, holographic optical elements, artificial intelligence, optical interconnects, optical correlators, commerce, medical practice, holographic weapon sight, night vision goggles and games etc. One of the major obstacles for the success of holographic technology to a large extent is the lack of suitable recording medium. Compared with other holographic materials such as dichromated gelatin and silver halide emulsions, photopolymers have the great advantage of recording and reading holograms in real time and the spectral sensitivity could be easily shifted to the type of recording laser used by simply changing the sensitizing dye. Also these materials possess characteristics such as good light sensitivity, real time image development, large dynamic range, good optical properties, format flexibility, and low cost. This thesis describes the attempts made to fabricate highly economic photopolymer films for various holographic applications. In the present work, Poly (vinyl alcohol) (PVA) and poly (vinyl chloride) (PVC) are selected as the host polymer matrices and methylene blue (MB) is used as the photosensitizing dye. The films were fabricated using gravity settling method. No chemical treatment or pre/post exposures were applied to the films. As the outcome of the work, photopolymer films with more than 70% efficiency, a permanent recording material which required no fixing process, a reusable recording material etc. were fabricated.
Resumo:
Dual beam mode-matched thermal lens method has been employed to measure the heat diffusion in nanofluid of silver with various volumes of rhodamine 6G, both dispersed in water. The important observation is an indication of temperature dependent diffusivity and that the overall heat diffusion is slower in the chemically prepared Ag sol compared to that of water. The experimental results can be explained assuming that Brownian motion is the main mechanism of heat transfer under the present experimental conditions. Light induced aggregation of the nanoparticles can also result in an anomalous diffusion behavior.
Direction Dependent Transmission Characteristics of Dye Mixture Doped Polymer Optical Fibre Preforms
Resumo:
The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.
Direction Dependent Transmission Characteristics of Dye Mixture Doped Polymer Optical Fibre Preforms
Resumo:
The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.
Resumo:
We report unusual spectral narrowing and laser emission from polymer thin films doped with Coumarin 540 dye. The laser emission from the polymer films is found to be highly dependent upon the excitation length of the medium. Even a short length of 1.75 mm of the dye doped film gave rise to laser emission with FWHM of 0.3 nm for a pump intensity of 825 kW cm−2. The partial reflections from the broad lateral surfaces of the free standing films provided the optical feedback for the laser emission. Occurrence of well-resolved equally spaced resonant modes confirmed the effect of a Fabry–Perot-like optical cavity between the film surfaces
Loss characterization in rhodamine 6G doped polymer film waveguide by side illumination fluorescence
Resumo:
We report the position dependent tuning of fluorescence emission from rhodamine 6G doped polymethylmethacrylate film waveguide using a side illumination technique. The transmitted fluorescence as a function of the distance from the point of illumination is measured by translating the waveguide horizontally across a monochromatic light source. This technique has been utilized to characterize the optical loss in dye doped waveguides. We observe that the optical loss coefficients for shorter and longer distances of propagation through the dye doped waveguide are different. At longer distance of propagation a decrease in optical loss coefficient is observed
Direction Dependent Transmission Characteristics of Dye Mixture Doped Polymer Optical Fibre Preforms
Resumo:
The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.