997 resultados para Larval morphology
Resumo:
The identification of larval istiophorid billfishes from the western North Atlantic Ocean has long been problematic. In the present study, a molecular technique was used to positively identify 27 larval white marlin (Tetrapturus albidus), 96 larval blue marlin (Makaira nigricans), and 591 larval sailfish (Istiophorus platypterus) from the Straits of Florida and the Bahamas. Nine morphometric measurements were taken for a subset of larvae (species known), and lower jaw pigment patterns were recorded on a grid. Canonical variates analysis (CVA) was used to reveal the extent to which the combination of morphometric, pigment pattern, and month of capture information was diagnostic to species level. Linear regression revealed species-specific relationships between the ratio of snout length to eye orbit diameter and standard length (SL). Confidence limits about these relationships served as defining characters for sailfish >10 mm SL and for blue and white marlin >17 mm SL. Pigment pattern analysis indicated that 40% of the preflexion blue marlin examined possessed a characteristic lower jaw pigment pattern and that 62% of sailfish larvae were identifiable by lower jaw pigments alone. An identification key was constructed based on pigment patterns, month of capture, and relationships between SL and the ratio of snout length to eye orbit diameter. The key yielded identifications for 69.4% of 304 (blind sample) larvae used to test it; only one of these identifications was incorrect. Of the 93 larvae that could not be identified by the key, 71 (76.3%) were correctly identified with CVA. Although identif ication of certain larval specimens may always require molecular techniques, it is encouraging that the majority (92.4%) of istiophorid larvae examined were ultimately identifiable from external characteristics alone.
Resumo:
The findings are presented of a study conducted to use autochthonously obtained, nonpathogenic heterotrophic marine bacteria as a substitute feed for microalgae in rearing larval Penaeus monodon. Eleven strains were isolated: Micrococcus (MCC), Staphylococcus, Streptococcus, Bacillus (two strains; BAC-1, BAC-2), Pseudomonas (two strains; PSM-1, PSM-2), Vibrio parahemolyticus, V. fluviatilis, Moraxella (MOR) and Flavobacterium. Six nonhemolytic strains were then chosen for the Penaeus monodon larval feed trials: BAC-1, BAC-2, PSM-1, PSM-2, MCC and MOR. The study demonstrates that bacterial biomass could be further investigated as a partial substitute for microalgae in penaeid shrimp larval rearing.
Resumo:
Body length measurement is an important part of growth, condition, and mortality analyses of larval and juvenile fish. If the measurements are not accurate (i.e., do not reflect real fish length), results of subsequent analyses may be affected considerably (McGurk, 1985; Fey, 1999; Porter et al., 2001). The primary cause of error in fish length measurement is shrinkage related to collection and preservation (Theilacker, 1980; Hay, 1981; Butler, 1992; Fey, 1999). The magnitude of shrinkage depends on many factors, namely the duration and speed of the collection tow, abundance of other planktonic organisms in the sample (Theilacker, 1980; Hay, 1981; Jennings, 1991), the type and strength of the preservative (Hay, 1982), and the species of fish (Jennings, 1991; Fey, 1999). Further, fish size affects shrinkage (Fowler and Smith, 1983; Fey, 1999, 2001), indicating that live length should be modeled as a function of preserved length (Pepin et al., 1998; Fey, 1999).
Resumo:
Water currents are vertically structured in many marine systems and as a result, vertical movements by fish larvae and zooplankton affect horizontal transport (Power, 1984). In estuaries, the vertical movements of larvae with tidal periods can result in their retention or ingress (Fortier and Leggett, 1983; Rijnsdorp et al., 1985; Cronin and Forward, 1986; Forward et al., 1999). On the continental shelf, the vertical movements of organisms interact daily and ontogenetically with depth-varying currents to affect horizontal transport (Pillar et al., 1989; Barange and Pillar, 1992; Cowen et al., 1993, 2000; Batchelder et al., 2002).
Resumo:
Otoliths of larval and juvenile fish provide a record of age, size, growth, and development (Campana and Neilson, 1985; Thorrold and Hare, 2002). However, determining the time of first increment formation in otoliths (Campana, 2001) and assessing the accuracy (deviation from real age) and precision (repeatability of increment counts from the same otolith) of increment counts are prerequisites for using otoliths to study the life history of fish (Campana and Moksness, 1991). For most fish species, first increment deposition occurs either at hatching, a day after hatching, or after first feeding and yolksac absorption (Jones, 1986; Thorrold and Hare, 2002). Increment deposition before hatching also occurs (Barkmann and Beck, 1976; Radtke and Dean, 1982). If first increment deposition does not occur at hatching, the standard procedure is to add a predetermined number to increment counts to estimate fish age (Campana and Neilson, 1985).
Resumo:
Light traps are one of a number of different gears used to sample pelagic larval and juvenile fishes. In contrast to conventional towed nets, light traps primarily collect larger size classes, including settlement-size larvae (Choat et al., 1993; Hickford and Schiel, 1999 ; Hernandez and Shaw, 2003), and, therefore, have become important tools for discerning recruitment dynamics (Sponaugle and Cowen, 1996; Wilson, 2001). The relative ease with which multiple synoptic light trap samples can be taken means that larval distribution patterns can be mapped with greater spatial resolution (Doherty, 1987). Light traps are also useful for sampling shallow or structurally complex habitats where towed nets are ineffective or prohibited (Gregory and Powles, 1985; Brogan, 1994; Hernandez and Shaw, 2003).
Resumo:
Seasonal and cross-shelf patterns were investigated in larval fish assemblages on the continental shelf off the coast of Georgia. The influence of environmental factors on larval distributions also was examined, and larval transport processes on the shelf were considered. Ichthyoplankton and environmental data were collected approximately every other month from spring 2000 to winter 2002. Ten stations were repeatedly sampled along a 110-km cross-shelf transect, including four stations in the vicinity of Gray’s Reef National Marine Sanctuary. Correspondence analysis (CA) on untransformed community data identified two seasonal (warm weather [spring, summer, and fall] and winter) and three cross-shelf larval assemblages (inner-, mid-, and outer-shelf ). Five environmental factors (temperature, salinity, density, depth of the water column, and stratification) were related to larval cross-shelf distribution. Specifically, increased water column stratification was associated with the outer-shelf assemblage in spring, summer, and fall. The inner shelf assemblage was associated with generally lower temperatures and lower salinities in the spring and summer and higher salinities in the winter. The three cross-shelf regions indicated by the three assemblages coincided with the location of three primary water masses on the shelf. However, taxa occurring together within an assemblage were transported to different parts of the shelf; thus, transport across the continental shelf off the coast of Georgia cannot be explained solely by twodimensional physical factors.