962 resultados para Langmuir monolayer
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The surface pressure-molecular area (pi-A) isotherms for Langmuir monolayers of four perylenetetracarboxylic (PTCD) derivatives, measured with varying subphase temperatures and compression speeds, are reported. The behavior of these PTCD derivatives at the water-air interface is modeled using the rigid docking method. This approach is the first attempt to model the molecular orientation of PTCD on the water surface to be compared with experimental Langmuir isotherms. Through this methodology, it would be possible to anticipate aggregation and determine if favorable spatial orientations of perylenes are generated on the water surface. The pi-A isotherm experiments show that these molecules can support high surface pressures, indicating strong packing on the water surface and that the isotherms are compression speed independent but temperature dependent. The molecular orientation and stacking was further examined in Langmuir-Blodgett (LB) monolayers deposited onto glass and glass coated with Ag island films using UV-visible absorption and surface-enhanced fluorescence (SEF) measurements.
Resumo:
Langmuir films of a tetracarboxylic perylene derivative and polypyrrole display condensed surface pressure isotherms that are shifted when Cu2+ ions are added to the ultrapure water subphase. These films were transferred onto interdigitated gold electrodes leading to Y-type Langmuir-Blodgett (LB) films. The electrodes modified with 5-layer LB films were immersed into a flask with ultrapure water and water containing Cu2+ ions at concentrations ranging from mM to muM. Impedance measurements indicated a distinct electrical response for the two types of films. Although the materials chosen have no specificity for ionic metals, they can be combined for detecting trace levels of Cu2+, which may be exploited in water quality monitoring. (C) 2004 Elsevier B.V. All rights reserved.
Langmuir and langmuir-blodgett films of polyfluorenes and their use in polymer light-emitting diodes
Resumo:
The Langmuir and Langmuir-Blodgett (LB) film properties of two polyfluorene derivatives, namely poly(2,7-9,9'-dihexylfluorene-dyil) (PDHF) and poly(9,9 dihexylfluorene-dyil-vynilene-alt-1,4-phenylene-vyninele) (PDHF-PV), are reported. Surface pressure (Pi-A) and surface potential (Delta V-A) isotherms indicated that PDHF-PV forms true monolayers at the air/water interface, but PDHF does not. LB films could be transferred onto various types of substrate for both PDHF and PDHF-PV. Only the LB films from PDHF-PV could withstand deposition of a layer of evaporated metal to form a light-emitting diode (PLED), which had typical rectifying characteristics and emitted blue light. It is inferred that the ability of the polymer to form true monomolecular layers at the air/water interface seems to be associated with the viability of the LB films in PLEDs.
Resumo:
The temperature dependence of photoinduced birefringence was investigated for mixed Langmuir-Blodgett (LB) films from the homopolymer poly[4'-[[2-(methacryloyloxy)ethyl]ethyl-amino]-2-chloro-4-nitroazobenzene] (HPDR13) and cadmium stearate (Cdst) and from the copolymer 4-[N-ethyl-N-(2-hydroxyethyl)]amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) and CdSt. Birefringence was achieved by impinging a linearly polarized light on the LB films. The maximum birefringence achieved decreased with temperature as thermal relaxation of the chromophores was facilitated. The buildup curves for birefringence were fitted with biexponential functions representing distinctly different mechanisms with time constants. The first, fast process is thermally activated and may be represented by an Arrhenius process. The decay of birefringence after switching off the laser source was described by a Kohlraush-Williams-Watts (KWW) function, consistent with a distribution of relaxation times for the polymer system. Activation energies were obtained from Arrhenius plots of the rate constant of the exponential functions and KWW function, which showed that the buildup of birefringence was very similar for the two polymer systems. The decay, however, was slower for the LB film from MMA-DR13/CdSt. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
Langmuir-Blodgett (LB) films from a ruthenium complex, mer-[RuCl3(dppb)(py)] (dppb = PPh2(CH2)(4)PPh2; py = pyridine) (Rupy), and from mixtures with varied amounts of polyaniline (PANi) were fabricated. Molecular-level interactions between the two components are investigated by surface potential, dc conductivity and Raman spectroscopy measurements, particularly for the mixed film with 10% of Rupy. For the latter, the better miscibility led to an interaction with Rupy inducing a decrease in the conducting state of PANi, as observed in the Raman spectra and conductivity measurement. The interaction causes the final film properties to depend on the concentration of Rupy, and this was exploited to produce a sensor array made up of sensing units consisting of 11-layer LB films from pure PANi, pure Rupy and mixtures with 10 and 30% of Rupy. It is shown that the combination of only four non-specific sensing units allows one to distinguish the basic tastes detected by biological systems, viz. saltiness, sweetness, sourness and bitterness, at the muM level. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A soliton model for proton conductivity in Langmuir films is presented. The model contains three real scalar fields describing the hydrogen involved in the conduction, the hydrophilic head of the Langmuir film, and the water. Soliton solutions that describe proton motion along the hydrogen bonds are found. Under compression of the film, the distance between the minima of the proton potential and the strength of the hydrogen bonds between the film molecule and the water are changed. Such changes increase the probability of soliton creation. The model. presented allows proton conductivity data in Langmuir films to be explained. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
Four lignin samples were extracted from sugar cane bagasse using four different alcohols (methanol, ethanol, n-propanol, and 1-butanol) via the organosolv-CO2 supercritical pulping process. Langmuir films were characterized by surface pressure vs mean molecular area (Pi-A) isotherms to exploit information at the molecular level carrying out stability tests, cycles of compression/expansion (hysteresis), subphase temperature variations, and metallic ions dissolved into the water subphase at different concentrations. Briefly, it was observed that these lignins are relatively stable on the water surface when compared to those obtained via different extraction processes. Besides, the Pi-A isotherms are shifted to smaller molecular areas at higher subphase temperatures and to larger molecular areas when the metallic ions are dissolved into the subphase. The results are related to the formation of stable aggregates (domains) onto the water subphase by these lignins, as shown in the Pi-A isotherms. It was found as well that the most stable lignin monolayer onto the water subphase is that extracted with 1-butanol. Homogeneous Langmuir-Blodgett (LB) films of this lignin could be produced as confirmed by UV-vis absorption spectroscopy and the cumulative transfer parameter. In addition, FTIR analysis showed that this lignin LB film is structured in a way that the phenyl groups are organized preferentially parallel to the substrate surface. Further, these LB films were deposited onto gold interdigitated electrodes and ITO and applied in studies involving the detection of Cd+2 ions in aqueous solutions at low concentration levels throughimpedance spectroscopy and electrochemical measurements. FTIR spectroscopy was carried out before and after soaking the thin films into Cd+2 aqueous solutions, revealing a possible physical interaction between the lignin phenyl groups and the heavy metal ions. The importance of using nanostructured systems is demonstrated as well by comparing both LB and cast films.
Resumo:
We report on the use of dynamic scale theory and fractal analyses in a study of the growth stages of Langmuir-Blodgett (LB) films of polyaniline and a neutral biphosphinic ruthenium complex, namely mer-[ RuCl3 (dppb)(py)] (dppb = 1,4-bis(diphenylphosphine) buthane, py = pyridine), Rupy. The LB films were deposited onto indium-tin-oxide substrates and characterized with atomic force microscopy. From the granular morphology exhibited by the films one could infer growth processes inside and outside the grains. Growth outside was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of about 2.7. As one would expect, inside the grains the morphology is close to a Euclidian surface with fractal dimension of about 2.
Resumo:
Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) are used to investigate molecular organization in Langmuir-Blodgett (LB) films of two kinds of lignins. The lignins were extracted from sugar cane bagasse using distinct extraction processes and are referred to here as ethanol lignin (EL) and saccharification lignin (SAC). AFM images show that LB films from EL have a flat surface in comparison with those from SAC. For the latter, ellipsoidal aggregates are seen oriented perpendicularly to the substrate. This result is confirmed by a combination of transmission and reflection FTIR measurements, which also point to lignin aggregates preferentially oriented perpendicularly to the substrate. For LB films from EL, on the other hand, aggregates are preferentially oriented parallel to the substrate, again consistent with the flat surface observed in AFM data. The vibrational spectroscopy data for cast films from both lignins show random molecular organization, as one should expect.
Resumo:
The temperature dependence has been investigated for the photoinduced birefringence in Langmuir-Blodgett (LB) films from the azocopolymer 4-[N- ethyl -N-(2-hydroxyethyl)] amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) mixed with cadmium stearate. The buildup and relaxation of the birefringence in the range from 20 to 296 K were fitted with a Kohlrausch-Williams-Watts (KWW) function, with a beta-value of 0.78-0.98 for the build-up and 0.18-0.27 for the decay. This is consistent with a distribution of time constants for the kinetics of the birefringence processes. The maximum birefringence increased with increasing temperature up to 120 K because the free volume fluctuation also increased with temperature. Above 120 K, the birefringence decreased with temperature as thermal diffusion dominates. In the latter range of temperature, an Arrhenius behavior is inferred for both build-up and decay of birefringence. In each case two activation energies were obtained: 0.8 and 5 kJ/mol for the build-up and 10 and 30 kJ/mol for the decay. The energies for the build-up are much lower than those associated with motion of the polymer chain, which means that the dynamics is governed by the orientation of the chromophores. For the decay, local motion of lateral groups of the polymer chains becomes important as the activation energies are within the range of gamma-relaxation energies. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work, we investigate Langmuir monolayers froth an amide extracted from dried roots of Ottonia propinqua, a native Brazilian plant believed to exhibit anesthetic and hallucinogen activities. In addition to producing monolayers from the amide itself, we probe the molecular-level action of the amide on phospholipids employed as simple membrane models. The surface pressure-molecular area (pi-A) isotherms for the amide were little affected by a number of subphase conditions. Almost no changes were observed upon varying the compression speed, spreading volume onto the surface, ions in the subphase, ionic strength and the solution solvent. However, stronger effects occurred when the subphase temperature and pH were altered, as the isotherms were shifted to larger areas with increasing temperatures and decreasing pHs. These results are discussed in terms of the molecular packing adopted by the amide at the air-water interface. In the mixed films with arachidic acid, the area per molecule varied linearly with the concentration of amide, probably due to phase separation. on the other hand, in the mixed films with dipalmitoyl phosphatidyl choline (DPPC), small amounts of the amide were sufficient to change the pi-A isotherms significantly. This points to a strong molecular-level interaction, probably between the phosphate group in the zwitterion of DPPC and the nitrogen from the amidic group. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers ( when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.
Resumo:
Langmuir monolayers and Langmuir-Blodgett (LB) films have been produced from polyaniline and a biphosphinic ruthenium complex, referred to as Rupy. Strong, repulsive interaction between the two components led to a nonlinear change in area per molecule and surface potential with the concentration of Rupy in the mixed film. Molecular interaction was also denoted in the spectroscopic and electrochemical properties of the Y-type LB transferred films. The Raman spectra of mixed PANI-Rupy films indicated that the degree of oxidation of PANI increased linearly with the concentration of Ropy. With PANI being increasingly oxidized by presence of Rupy, the electroactivity of the mixed films decreased with the amount of Rupy, to become undetectable when the mixed LB film is 501 mol in Rupy. The presence of Rupy caused the electrical properties of the mixed LB films to be less sensitive to environmental changes. The electrical capacitance of a mixed film changed only by 15% when the sample was taken from vacuum to air, whereas the change was 215% for a pure PANI LB film.