940 resultados para Laminated metals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries(1,2) and other obstacles(3,4). For nano-structured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle(5-9), because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals(10,11) in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies(12,13) did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New parameters of nearest-neighbor EAM (1N-EAM), n-th neighbor EAM (NN-EAM), and the second-moment approximation to the tight-binding (TB-SMA) potentials are obtained by fitting experimental data at different temperatures. In comparison with the available many-body potentials, our results suggest that the 1N-EAM potential with the new parameters is the best description of atomic interactions in studying the thermal expansion of noble metals. For mechanical properties, it is suggested that the elastic constants should be calculated in the experimental zero-stress states for all three potentials. Furthermore, for NNEAM and TB-SMA potentials, the calculated results approach the experimental data as the range of the atomic interaction increases from the first-neighbor to the sixth-neighbor distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalysts of Pt/C, PtRu/C and Ru/C were prepared by the impregnation method. The facet characterization, the dispersion and the particle size for the catalysts were determined by means of X-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy was also used to analyze the state and the valency of the noble metals. The results show that the particle size was in nanometer range and the binary metals have come into being an alloy. The platinum in the catalysts existed in zero valency. The valency of the ruthenium on the surface is different from that in the body, while the ruthenium on the surface existed in oxide-form. PtRu/C and Pt/C are of good activity to the electrooxidation of hydrogen except Ru/C. PtRu/C is more tolerant of CO than Pt/C, and CO is only adsorbed on Pt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive, critical and up-to-date review of analytical methods developed during the last decade for metals present in sea water is presented. Separate sections are devoted to singular and multimetal determinations. Furthermore, a critical comparison of relative merits or demerits of a particular procedure is made in terms of sensitivity, selectivity and precision. Various aspects of analysis of sea water samples for metals are summarized, and the future trends are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Dissolved” (< 0.4 μm filtered) and “total dissolvable” (unfiltered) trace element samples were collected using “clean” sampling techniques from four vertical profiles in the eastern Atlantic Ocean on the first IOC Trace Metals Baseline expedition. The analytical results obtained by 9 participating laboratories for Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, and Se on samples from station 4 in the northeast Atlantic have been evaluated with respect to accuracy and precision (intercomparability). The data variability among the reporting laboratories was expressed as 2 × SD for a given element and depth, and was comparable to the 95% confidence interval reported for the NASS seawater reference standards (representing analytical variability only). The discrepancies between reporting laboratories appear to be due to inaccuracies in standardization (analytical calibration), blank correction, and/or extraction efficiency corrections.Several of the sampling bottles used at this station were not adequately pre-cleaned (anomalous Pb results). The sample filtration process did not appear to have been a source of contamination for either dissolved or particulate trace elements. The trace metal profiles agree in general with previously reported profiles from the Atlantic Ocean. We conclude that the sampling and analytical methods we have employed for this effort, while still in need of improvement, are sufficient for obtaining accurate concentration data on most trace metals in the major water masses of the oceans, and to enable some evaluation of the biogeochemical cycling of the metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found that a commonly used complexation and solvent extraction technique (using mixed dithiocarbamates/Freon/HNO3) does not always extract Cd, Co, Cu and Ni from estuarine samples with the same efficiency as from Milli-Q water. For samples collected from the Derwent Estuary (Australia), the reduced extraction efficiency only occurred for unfiltered samples, but low extraction efficiencies were also observed for a (filtered) riverine certified reference material (SLRS-3) suggesting that the effect may be widespread. We have not been able to identify the reason for the low extraction efficiency and, although it is strongly correlated with the presence of high concentrations of suspended solids, dissolved organic matter and particulate iron, we have no experimental evidence to directly link any of these parameters to the effect. It is possible that similar effects may occur in other techniques which rely on a preconcentration step prior to analysis and that some literature values of heavy metals in estuarine waters may be low. We propose a modification of the standard complexation/solvent extraction method which overcomes these difficulties without adding significantly to the time taken for analyses.