647 resultados para Lactobacillus helveticus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have examined the gut bacterial metabolism of pomegranate by-product (POMx) and major pomegranate polyphenols, punicalagins, using pH-controlled, stirred, batch culture fermentation systems reflective of the distal region of the human large intestine. Incubation of POMx or punicalagins with faecal bacteria resulted in formation of the dibenzopyranone-type urolithins. The time course profile confirmed the tetrahydroxylated urolithin D as the first product of microbial transformation, followed by compounds with decreasing number of phenolic hydroxy groups: the trihydroxy analogue urolithin C and dihydroxylated urolithin A. POMx exposure enhanced the growth of total bacteria, Bifidobacterium spp. and Lactobacillus spp., without influencing the Clostridium coccoides–Eubacterium rectale group and the C. histolyticum group. In addition, POMx increased concentrations of short chain fatty acids (SCFA) viz. acetate, propionate and butyrate in the fermentation medium. Punicalagins did not affect the growth of bacteria or production of SCFA. The results suggest that POMx oligomers, composed of gallic acid, ellagic acid and glucose units, may account for the enhanced growth of probiotic bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects on the intestinal microbiota of a short period of marginal over-eating, characteristic of holiday or festival periods, were investigated in a pilot study. Fourteen healthy male subjects consumed a diet rich in animal protein and fat for seven days. During this period, the subjects significantly increased their dietary energy, protein, carbohydrate and fat intakes by 56, 59, 53 and 58%, respectively (all P < 0.05). The mean weight gain of 0.27 kg was less than the expected 1 kg, but this was consistent with a degree of under-reporting on the baseline diet. Fluorescence in situ hybridisation analysis confirmed the relative stability of each individual’s faecal microbiota but showed considerable variations between them. The diet was associated with a significant increase in numbers of total faecal bacteria and the bacteroides group, as detected by the universal bacterial probe (DAPI) and Bacteroides probe (Bac 303), respectively. Overall, there was a decrease in numbers of the Lactobacillus/Enterococcus group (Lab 158 probe; 2.8 ± 3.0% to 1.8 ± 1.8%) and the Bifidobacterium group (Bif 164 probe; 3.0 ± 3.7% to 1.7 ± 1.2%), although there was considerable inter-individual variation. Analysis of the relative proportions of each bacterial group as a percentage of the subject’s total bacteria showed a trend for a change in the intestinal microbiota that might be considered potentially unhealthy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between the gut microbiota and their mammalian host is known to have far-reaching consequences with respect to metabolism and health. We investigated the effects of eight days of oral antibiotic exposure (penicillin and streptomycin sulfate) on gut microbial composition and host metabolic phenotype in male Han-Wistar rats (n = 6) compared to matched controls. Early recolonization was assessed in a third group exposed to antibiotics for four days followed by four days recovery (n = 6). Fluorescence in situ hybridization analysis of the intestinal contents collected at eight days showed a significant reduction in all bacterial groups measured (control, 1010.7 cells/g feces; antibiotic-treated, 108.4). Bacterial suppression reduced the excretion of mammalian-microbial urinary cometabolites including hippurate, phenylpropionic acid, phenylacetylglycine and indoxyl-sulfate whereas taurine, glycine, citrate, 2-oxoglutarate, and fumarate excretion was elevated. While total bacterial counts remained notably lower in the recolonized animals (109.1 cells/g faeces) compared to the controls, two cage-dependent subgroups emerged with Lactobacillus/Enterococcus probe counts dominant in one subgroup. This dichotomous profile manifested in the metabolic phenotypes with subgroup differences in tricarboxylic acid cycle metabolites and indoxyl-sulfate excretion. Fecal short chain fatty acids were diminished in all treated animals. Antibiotic treatment induced a profound effect on the microbiome structure, which was reflected in the metabotype. Moreover, the recolonization process was sensitive to the microenvironment, which may impact on understanding downstream consequences of antibiotic consumption in human populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is considerable interest in the strain specificity of immune modulation by probiotics. The present study compared the immunomodulatory properties of six probiotic strains of different species and two genera in a human peripheral blood mononuclear cell (PBMC) model in vitro. Live cells of lactobacilli (Lactobacillus casei Shirota, L. rhamnosus GG, L. plantarum NCIMB 8826 and L. reuteri NCIMB 11951) and bifidobacteria (Bifidobacterium longum SP 07/3 and B. bifidum MF 20/5) were individually incubated with PBMC from seven healthy subjects for 24 h. Probiotic strains increased the proportion of CD69+ on lymphocytes, T cells, T cell subsets and natural killer (NK) cells, and increased the proportion of CD25+, mainly on lymphocytes and NK cells. The effects on activation marker expression did not appear to be strain specific. NK cell activity was significantly increased by all six strains, without any significant difference between strains. Probiotic strains increased production of IL-1β, IL-6, IL-10, TNF-α, granulocyte-macrophage colony-stimulating factor and macrophage inflammatory protein 1α to different extents, but had no effect on the production of IL-2, IL-4, IL-5 or TNF-β. The cytokines that showed strain-specific modulation included IL-10, interferon-γ, TNF-α, IL-12p70, IL-6 and monocyte chemotactic protein-1. The Lactobacillus strains tended to promote T helper 1 cytokines, whereas bifidobacterial strains tended to produce a more anti-inflammatory profile. The results suggest that there was limited evidence of strain-specific effects of probiotics with respect to T cell and NK cell activation or NK cell activity, whereas production of some cytokines was differentially influenced by probiotic strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in vitro fermentation selectivity of hydrolyzed caseinomacropeptide (CMP) glycosylated, via Maillard reaction (MR), with lactulose, galacto-oligosaccharides from lactose (GOSLa), and galacto-oligosaccharides from lactulose (GOSLu) was evaluated, using pH-controlled small-scale batch cultures at 37 °C under anaerobic conditions with human feces. After 10 and 24 h of fermentation, neoglyconjugates exerted a bifidogenic activity, similar to those of the corresponding prebiotic carbohydrates. No significant differences were found in Bacteroides, Lactobacillus�Enterococcus, Clostridium histolyticum subgroup, Atopobium and Clostridium coccoides�Eubacterium rectale populations. Concentrations of lactic acid and short-chain fatty acids (SCFA) produced during the fermentation of prebiotic carbohydrates were similar to those produced for their respective neoglycoconjugates at both fermentation times. These findings, joined with the functional properties attributed to CMP, could open up new applications of MR products involving prebiotics as novel multiple-functional ingredients with potential beneficial effects on human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, probiotic fermented milk products have raised interest regarding their potential anti-hypertensive activity mainly due to the production of angiotensin-I-converting enzyme (ACE) inhibitory peptides. Ionic calcium released upon milk acidification during fermentation is also known to exert hypotensive activity. Thus, the main aim of this study was to screen probiotic strains for their ability to induce ACE-inhibitory activity upon fermentation of milk. The relationship of ACE-inhibitory activity percentage (ACEi%) with cell growth, pH, degree of hydrolysis and the concentration of ionic calcium released during the fermentation was also investigated. Compared with other lactic acid bacteria, Lactobacillus casei YIT 9029 and Bifidobacterium bifidum MF 20/5 were able to induce strong ACE-inhibitory activity. Furthermore, it was found that the ionic calcium released during milk fermentation could contribute to the ACE-inhibitory activity. These findings will contribute to the development of new probiotic dairy products with anti-hypertensive activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The University of Reading has conducted some preliminary work on the prevalence of Campylobacter spp., Salmonella spp. and Arenavirus in Norway rats trapped from farms and semi-urban areas in central southern England. Campylobacter is the cause of a notificable disease in the UK, with 57,772 cases reported for England and Wales in 2009. Transmission to humans is believed to be primarily through undercooked meat, from contaminated water, and through contact with pets; and symptoms include a high temperature, severe diarrhoea, vomiting and abdominal pain. Ninety-seven per-cent of sporadic cases have been attributed to farm animals, and in particular the meat and poultry industry. There are eighteen species of Campylobacter, eleven of which can be pathogenic to humans; although the principal species that cause gastrointestinal disease in humans are C. jejuni and C. coli; although C. lari, C. helveticus and C. upsaliensis are also involved. Salmonella species also causes a gastrointestinal disease, and in the UK, is common in chicken and has been linked to egg production. Species are typed using antigen specific agglutination tests, or by their susceptibility to specific bacteriophage. Some strains are known to be linked with human disease (eg. S. enteritidis PT4).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consumption of anthocyanins has been related with beneficial health effects. However, bioavailability studies have shown low concentration of anthocyanins in plasma and urine. In this study, we have investigated the bacterial-dependent metabolism of malvidin-3-glucoside, gallic acid and a mixture of anthocyanins using a pH-controlled, stirred, batch-culture fermentation system reflective of the distal human large intestine conditions. Most anthocyanins have disappeared after 5 h incubation while gallic acid remained constant through the first 5 h and was almost completely degraded following 24 h of fermentation. Incubation of malvidin-3-glucoside with fecal bacteria mainly resulted in the formation of syringic acid, while the mixture of anthocyanins resulted in formation of gallic, syringic and p-coumaric acids. All the anthocyanins tested enhanced significantly the growth of Bif idobacterium spp. and Lactobacillus−Enterococcus spp. These results suggest that anthocyanins and their metabolites may exert a positive modulation of the intestinal bacterial population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avian intestinal spirochetosis (AIS) results from the colonization of the ceca and colorectum of poultry by pathogenic Brachyspira species. The number of cases of AIS has increased since the 2006 European Union ban on the use of antibiotic growth promoters, which, together with emerging antimicrobial resistance in Brachyspira, has driven renewed interest in alternative intervention strategies. Probiotics have been reported as protecting livestock against infection with common enteric pathogens, and here we investigate which aspects of the biology of Brachyspira they antagonize in order to identify possible interventions against AIS. The cell-free supernatants (CFS) of two Lactobacillus strains, Lactobacillus reuteri LM1 and Lactobacillus salivarius LM2, suppressed the growth of Brachyspira pilosicoli B2904 in a pH-dependent manner. In in vitro adherence and invasion assays with HT29-16E three-dimensional (3D) cells and in a novel avian cecal in vitro organ culture (IVOC) model, the adherence and invasion of B. pilosicoli in epithelial cells were reduced significantly by the presence of lactobacilli (P < 0.001). In addition, live and heat-inactivated lactobacilli inhibited the motility of B. pilosicoli, and electron microscopic observations indicated that contact between the lactobacilli and Brachyspira was crucial in inhibiting both adherence and motility. These data suggest that motility is essential for B. pilosicoli to adhere to and invade the gut epithelium and that any interference of motility may be a useful tool for the development of control strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interdigestive intestinal motility, and especially phase III of the migrating myoelectric/motor complex (MMC), is responsible for intestinal clearance and plays an important role in prevention of bacterial overgrowth and translocation in the gut. Yet previous results from gnotobiotic rats have shown that intestinal microflora can themselves affect the characteristics of the myoelectric activity of the gut during the interdigestive state. Given that the composition of the intestinal microflora can be altered by dietary manipulations, we investigated the effect of supplementation of the diet with synbiotics on intestinal microflora structure and the duodenojejunal myoelectric activity in the rat. To reduce animal distress caused by restraint and handling, which can itself affect GI motility, we applied radiotelemetry for duodenojejunal EMG recordings in conscious, freely moving rats. Thirty 16-month-old Spraque-Dawley rats were used. The diet for 15 rats (E group) was supplemented with chicory inulin, Lactobacillus rhamnosus and Bifidobacterium lactis. The remaining 15 rats were fed control diet without supplements (C group). Three rats from each group were implanted with three bipolar electrodes positioned at 2, 14 and 28 cm distal to the pylorus. After recovery, two 6 h recordings of duodenojejunal EMG were carried out on each operated rat. Subsequently, group C rats received feed supplements and group E rats received only control diet for 1 week, and an additional two 6 h recordings were carried out on each of these rats. Non-operated C and E rats were killed and samples of GI tract were collected for microbiological analyses. Supplementation of the diet with the pro- and prebiotics mixture increased the number of bifidobacteria, whereas it decreased the number of enterobacteria in jejunum, ileum, caecum and colon. In both caecum and colon, the dietary supplementation increased the number of total anaerobes and lactobacilli. Treatment with synbiotics increased occurrence of phase III of the MMC at all three levels of the small intestine. The propagation velocity of phase III in the whole recording segment was also increased from 3.7 +/- 0.2 to 4.4 +/- 0.2 cm min(-1) by dietary treatment. Treatment with synbiotics increased the frequency of response potentials of the propagated phase III of the MMC at both levels of the jejunum, but not in the duodenum. In both parts of the jejunum, the supplementation of the diet significantly decreased the duration of phase II of the MMC, while it did not change the duration of phase I and phase III. Using the telemetry technique it was demonstrated that changes in the gastrointestinal microflora exhibited an intestinal motility response and, more importantly, that such changes can be initiated by the addition of synbiotics to the diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six strains of lactic acid producing bacteria (LAB) were incubated (1 x 10(8)cfu/ml) with genotoxic faecal water from a human subject. HT29 human adenocarcinoma cells were then challenged with the resultant samples and DNA damage measured using the single cell gel electrophoresis (comet) assay. The LAB strains investigated were Bifidobacterium sp. 420, Bifidobacterium Bb12, Lactobacillus plantarum, Streptococcus thermophilus, Lactobacillus bulgaricus and Enterococcus faecium. DNA damage was significantly decreased by all bacteria used with the exception of Strep. thermophilus. Bif. Bb12 and Lact. plantarum showed the greatest protective effect against DNA damage. Incubation of faecal water with different concentrations of Bif. Bb12 and Lact. plantarum revealed that the decrease in genotoxicity was related to cell density. Non-viable (heat treated) probiotic cells had no effect on faecal water genotoxicity. In a second study, HT29 cells were cultured in the presence of supernatants of incubations of probiotics with various carbohydrates including known prebiotics; the HT29 cells were then exposed to faecal water. Overall, incubations involving Lact. plantarum with the fructooligosaccharide (FOS)-based prebiotics Inulin, Raftiline, Raftilose and Actilight were the most effective in increasing the cellular resistance to faecal water genotoxicity, whereas fermentations with Elixor (a galactooligosaccharide) and Fibersol (a maltodextrin) were less effective. Substantial reductions in faecal water-induced DNA damage were also seen with supernatants from incubation of prebiotics with Bif. Bb12. The supernatant of fermentations involving Ent. faecium and Bif. sp. 420 generally had less potent effects on genotoxicity although some reductions with Raftiline and Elixor fermentations were apparent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the antimicrobial properties of fifteen selected strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera against Gram-positive and Gram-negative pathogenic bacteria. In vitro antibacterial activity was initially investigated by an agar spot method. Results from the agar spot test showed that most of the selected strains were able to produce active compounds on solid media with antagonistic properties against Salmonella Typhimurium, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and Clostridium difficile. These results were also confirmed when cell-free culture supernatants (CFCS) from the putative probiotics were used in an agar well diffusion assay. Neutralization of the culture supernatants with alkali reduced the antagonistic effects. These experiments are able to confirm the capacity of potential probiotics to inhibit selected pathogens. One of the main inhibitory mechanisms may result from the production of organic acids from glucose fermentation and consequent lowering of culture pH. This observation was confirmed when the profile of organic acids was analysed demonstrating that lactic and acetic acid were the principal end products of probiotic metabolism. Furthermore, the assessment of the haemolytic activity and the susceptibility of the strains to the most commonly used antimicrobials, considered as basic safety aspects, were also studied. The observed antimicrobial activity was mainly genus-specific, additionally significant differences could be observed among species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the aim of investigating the potential of flavan-3-ols to influence the growth of intestinal bacterial groups, we have carried out the in vitro fermentation, with human faecal microbiota, of two purified fractions from grape seed extract (GSE): GSE-M (70% monomers and 28% procyanidins) and GSE-O (21% monomers and 78 % procyanidins). Samples were collected at 0, 5, 10, 24, 30 and 48 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and for analysis of phenolic metabolites. Both GSE-M and GSE-O fractions promoted growth of Lactobacillus/Enterococcus and decrease in the Clostridium histolyticum group during fermentation, although the effects were only statistically significant with GSE-M for Lactobacillus/Enterococcus (at 5 and 10 h of fermentation) and GSE-O for C. histolyticum (at 10 h of fermentation). Main changes in polyphenol catabolism also occurred during the first 10 h of fermentation, however no significant correlation coefficients (P>0.05) were found between changes in microbial populations and precursor flavan-3-ols or microbial metabolites. Together these data suggest that the flavan-3-ol profile of a particular food source could affect the microbiota composition and its catabolic activity, inducing changes that could in turn affect the bioavailability and potential bioactivity of these compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Obesity is rising at an alarming rate globally. Different fermentable carbohydrates have been shown to reduce obesity. The aim of the present study was to investigate if two different fermentable carbohydrates (inulin and b-glucan) exert similar effects on body composition and central appetite regulation in high fat fed mice. METHODOLOGY/PRINCIPAL FINDINGS: Thirty six C57BL/6 male mice were randomized and maintained for 8 weeks on a high fat diet containing 0% (w/w) fermentable carbohydrate, 10% (w/w) inulin or 10% (w/w) b-glucan individually. Fecal and cecal microbial changes were measured using fluorescent in situ hybridization, fecal metabolic profiling was obtained by proton nuclear magnetic resonance (1H NMR), colonic short chain fatty acids were measured by gas chromatography, body composition and hypothalamic neuronal activation were measured using magnetic resonance imaging (MRI) and manganese enhanced MRI (MEMRI), respectively, PYY (peptide YY) concentration was determined by radioimmunoassay, adipocyte cell size and number were also measured. Both inulin and b-glucan fed groups revealed significantly lower cumulative body weight gain compared with high fat controls. Energy intake was significantly lower in b-glucan than inulin fed mice, with the latter having the greatest effect on total adipose tissue content. Both groups also showed an increase in the numbers of Bifidobacterium and Lactobacillus-Enterococcus in cecal contents as well as feces. b- glucan appeared to have marked effects on suppressing MEMRI associated neuronal signals in the arcuate nucleus, ventromedial hypothalamus, paraventricular nucleus, periventricular nucleus and the nucleus of the tractus solitarius, suggesting a satiated state. CONCLUSIONS/SIGNIFICANCE: Although both fermentable carbohydrates are protective against increased body weight gain, the lower body fat content induced by inulin may be metabolically advantageous. b-glucan appears to suppress neuronal activity in the hypothalamic appetite centers. Differential effects of fermentable carbohydrates open new possibilities for nutritionally targeting appetite regulation and body composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Multi-species probiotic preparations have been suggested as having a wide spectrum of application, although few studies have compared their efficacy with that of individual component strains at equal concentrations. We therefore tested the ability of 4 single probiotics and 4 probiotic mixtures to inhibit the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. METHODS: We used an agar spot test to test the ability of viable cells to inhibit pathogens, while a broth inhibition assay was used to assess inhibition by cell-free probiotic supernatants in both pH-neutralised and non-neutralised forms. RESULTS: In the agar spot test, all probiotic treatments showed inhibition, L. acidophilus was the most inhibitory single strain against E. faecalis, L. fermentum the most inhibitory against E. coli. A commercially available mixture of 14 strains (Bio-Kult(®)) was the most effective mixture, against E. faecalis, the 3-lactobacillus mixture the most inhibitory against E. coli. Mixtures were not significantly more inhibitory than single strains. In the broth inhibition assays, all probiotic supernatants inhibited both pathogens when pH was not controlled, with only 2 treatments causing inhibition at a neutral pH. CONCLUSIONS: Both viable cells of probiotics and supernatants of probiotic cultures were able to inhibit growth of two urinary tract pathogens. Probiotic mixtures prevented the growth of urinary tract pathogens but were not significantly more inhibitory than single strains. Probiotics appear to produce metabolites that are inhibitory towards urinary tract pathogens. Probiotics display potential to reduce the incidence of urinary tract infections via inhibition of colonisation.