908 resultados para Lactate minimum
Resumo:
Nonregular two-level fractional factorial designs are designs which cannot be specified in terms of a set of defining contrasts. The aliasing properties of nonregular designs can be compared by using a generalisation of the minimum aberration criterion called minimum G2-aberration.Until now, the only nontrivial designs that are known to have minimum G2-aberration are designs for n runs and m n–5 factors. In this paper, a number of construction results are presented which allow minimum G2-aberration designs to be found for many of the cases with n = 16, 24, 32, 48, 64 and 96 runs and m n/2–2 factors.
Resumo:
Minimum aberration is the most established criterion for selecting a regular fractional factorial design of maximum resolution. Minimum aberration designs for n runs and n/2 less than or equal to m < n factors have previously been constructed using the novel idea of complementary designs. In this paper, an alternative method of construction is developed by relating the wordlength pattern of designs to the so-called 'confounding between experimental runs'. This allows minimum aberration designs to be constructed for n runs and 5n/16 less than or equal to m less than or equal to n/2 factors as well as for n/2 less than or equal to m < n.
Resumo:
When Campylobacter jejuni cultures that had been grown in broth at 39degreesC were subcultured into fresh medium at 30degreesC, there was a transient period of growth followed by a decline in viable-cell numbers before growth resumed once more. We propose that this complex behavior is the net effect of the growth of inoculum cells followed by a loss of viability due to oxidative stress and the subsequent emergence of a spontaneously arising mutant population that takes over the culture.
Resumo:
A fast Knowledge-based Evolution Strategy, KES, for the multi-objective minimum spanning tree, is presented. The proposed algorithm is validated, for the bi-objective case, with an exhaustive search for small problems (4-10 nodes), and compared with a deterministic algorithm, EPDA and NSGA-II for larger problems (up to 100 nodes) using benchmark hard instances. Experimental results show that KES finds the true Pareto fronts for small instances of the problem and calculates good approximation Pareto sets for larger instances tested. It is shown that the fronts calculated by YES are superior to NSGA-II fronts and almost as good as those established by EPDA. KES is designed to be scalable to multi-objective problems and fast due to its small complexity.
Resumo:
A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.
OFDM joint data detection and phase noise cancellation based on minimum mean square prediction error
Resumo:
This paper proposes a new iterative algorithm for orthogonal frequency division multiplexing (OFDM) joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the relatively less studied problem of "overfitting" such that the iterative approach may converge to a trivial solution. Specifically, we apply a hard-decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the PHN, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical Simulations are also given to verify the proposed algorithm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.
Resumo:
A beamforming algorithm is introduced based on the general objective function that approximates the bit error rate for the wireless systems with binary phase shift keying and quadrature phase shift keying modulation schemes. The proposed minimum approximate bit error rate (ABER) beamforming approach does not rely on the Gaussian assumption of the channel noise. Therefore, this approach is also applicable when the channel noise is non-Gaussian. The simulation results show that the proposed minimum ABER solution improves the standard minimum mean squares error beamforming solution, in terms of a smaller achievable system's bit error rate.
Resumo:
An analysis of Stochastic Diffusion Search (SDS), a novel and efficient optimisation and search algorithm, is presented, resulting in a derivation of the minimum acceptable match resulting in a stable convergence within a noisy search space. The applicability of SDS can therefore be assessed for a given problem.
Resumo:
Generalized cubes are a subclass of hypercube-like networks, which include some hypercube variants as special cases. Let theta(G)(k) denote the minimum number of nodes adjacent to a set of k vertices of a graph G. In this paper, we prove theta(G)(k) >= -1/2k(2) + (2n - 3/2)k - (n(2) - 2) for each n-dimensional generalized cube and each integer k satisfying n + 2 <= k <= 2n. Our result is an extension of a result presented by Fan and Lin [J. Fan, X. Lin, The t/k-diagnosability of the BC graphs, IEEE Trans. Comput. 54 (2) (2005) 176-184]. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ligands such as CO, O2, or NO are involved in the biological function of myoglobin. Here we investigate the energetics and dynamics of NO interacting with the Fe(II) heme group in native myoglobin using ab initio and molecular dynamics simulations. At the global minimum of the ab initio potential energy surface (PES), the binding energy of 23.4 kcal/mol and the Fe-NO structure compare well with the experimental results. Interestingly, the PES is found to exhibit two minima: There exists a metastable, linear Fe-O-N minimum in addition to the known, bent Fe-N-O global minimum conformation. Moreover, the T-shaped configuration is found to be a saddle point, in contrast to the corresponding minimum for NO interacting with Fe(III). To use the ab initio results for finite temperature molecular dynamics simulations, an analytical function was fitted to represent the Fe-NO interaction. The simulations show that the secondary minimum is dynamically stable up to 250 K and has a lifetime of several hundred picoseconds at 300 K. The difference in the topology of the heme-NO PES from that assumed previously (one deep, single Fe-NO minimum) suggests that it is important to use the full PES for a quantitative understanding of this system. Why the metastable state has not been observed in the many spectroscopic studies of myoglobin interacting with NO is discussed, and possible approaches to finding it are outlined.
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.