963 resultados para LIQUID-LIQUID EXTRACTION
Resumo:
A new microscale method is reported for the determination of doxorubicin and its active metabolite, doxorubicinol, in parrot plasma. Sample workup involved acetonitrile protein precipitation, ethyl acetate extraction, followed by back extraction into HCl. Separations were achieved on a phenyl-hexyl column at 30 degrees C using acetonitrile (17%, v/v) in 0.01 M orthophosphoric acid (83%, v/v) delivered via a linear flow program. Fluorometric detection wavelengths were 235 nm (excitation) and 550 nm (emission). Calibration plots were linear (1 2 > 0.999), and recoveries were 71-87% from 20 to 400 ng/mL. Assay imprecision was
Resumo:
An assay using high performance liquid chromatography (HPLC)-electrospray ionization-tandem mass spectrometry (ESI-MS-MS) was developed for simultaneously determining concentrations of morphine, oxycodone, morphine-3-glucuronide, and noroxycodone, in 50 mul samples of rat serum. Deuterated (d(3)) analogues of each compound were used as internal standards. Samples were treated with acetonitrile to precipitate plasma proteins: acetonitrile was removed from the supernatant by centrifugal evaporation before analysis. Limits of quantitation (ng/ml) and their between-day accuracy and precision (%deviation and %CV) were-morphine, 3.8 (4.3% and 7.6%); morphine-3-glucuronide, 5.0 (4.5% and 2.9%); oxycodone, 4.5 (0.4% and 9.3%); noroxycodone, 5.0 (8.5% and 4.6%). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
High-performance liquid chromatography coupled by an electrospray ion source to a tandem mass spectrometer (HPLC-EST-MS/ MS) is the current analytical method of choice for quantitation of analytes in biological matrices. With HPLC-ESI-MS/MS having the characteristics of high selectivity, sensitivity, and throughput, this technology is being increasingly used in the clinical laboratory. An important issue to be addressed in method development, validation, and routine use of HPLC-ESI-MS/MS is matrix effects. Matrix effects are the alteration of ionization efficiency by the presence of coeluting substances. These effects are unseen in the chromatograrn but have deleterious impact on methods accuracy and sensitivity. The two common ways to assess matrix effects are either by the postextraction addition method or the postcolumn infusion method. To remove or minimize matrix effects, modification to the sample extraction methodology and improved chromatographic separation must be performed. These two parameters are linked together and form the basis of developing a successful and robust quantitative HPLC-EST-MS/MS method. Due to the heterogenous nature of the population being studied, the variability of a method must be assessed in samples taken from a variety of subjects. In this paper, the major aspects of matrix effects are discussed with an approach to address matrix effects during method validation proposed. (c) 2004 The Canadian Society of Clinical Chemists. All rights reserved.
Resumo:
The potential of solid phase microextraction (SPME) in the analysis of explosives is demonstrated. A sensitive, rapid, solventless and inexpensive method for the analysis of explosives and explosive odors from solid and liquid samples has been optimized using SPME followed by HPLC and GC/ECD. SPME involves the extraction of the organic components in debris samples into sorbent-coated silica fibers, which can be transferred directly to the injector of a gas chromatograph. SPME/HPLC requires a special desorption apparatus to elute the extracted analyte onto the column at high pressure. Results for use of GC/ECD is presented and compared to the results gathered by using HPLC analysis. The relative effects of controllable variables including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time have been optimized for various high explosives. ^
Resumo:
Fire debris evidence is submitted to crime laboratories to determine if an ignitable liquid (IL) accelerant was used to commit arson. An ignitable liquid residue (ILR) may be difficult to analyze due to interferences, complex matrices, degradation, and low concentrations of analytes. Debris from an explosion and pre-detonated explosive compounds are not trivial to detect and identify due to sampling difficulties, complex matrices, and extremely low amounts (nanogram) of material present. The focus of this research is improving the sampling and detection of ILR and explosives through enhanced sensitivity, selectivity, and field portable instrumentation. Solid Phase MicroExtraction (SPME) enhanced the extraction of ILR by two orders of magnitude over conventional activated charcoal strip (ACS) extraction. Gas chromatography tandem mass spectrometry (GC/MS/MS) improved sensitivity of ILR by one order of magnitude and explosives by two orders of magnitude compared to gas chromatography mass spectrometry (GC/MS). Improvements in sensitivity were attributed to enhanced selectivity. An interface joining SPME to ion mobility spectrometry (IMS) has been constructed and evaluated to improve field detection of hidden explosives. The SPME-IMS interface improved the detection of volatile and semi-volatile explosive compounds and successfully adapted the IMS from a particle sampler into a vapor sampler. ^
Resumo:
A comprehensive method for the analysis of 11 target pharmaceuticals representing multiple therapeutic classes was developed for biological tissues (fish) and water. Water samples were extracted using solid phase extraction (SPE), while fish tissue homogenates were extracted using accelerated solvent extraction (ASE) followed by mixed-mode cation exchange SPE cleanup and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Among the 11 target pharmaceuticals analyzed, trimethoprim, caffeine, sulfamethoxazole, diphenhydramine, diltiazem, carbamazepine, erythromycin and fluoxetine were consistently detected in reclaimed water. On the other hand, caffeine, diphenhydramine and carbamazepine were consistently detected in fish and surface water samples. In order to understand the uptake and depuration of pharmaceuticals as well as bioconcentration factors (BCFs) under the worst-case conditions, mosquito fish were exposed to reclaimed water under static-renewal for 7 days, followed by a 14-day depuration phase in clean water. Characterization of the exposure media revealed the presence of 26 pharmaceuticals while 5 pharmaceuticals including caffeine, diphenhydramine, diltiazem, carbamazepine, and ibuprofen were present in the organisms as early as 5 h from the start of the exposure. Liquid chromatography ultra-high resolution Orbitrap mass spectrometry was explored as a tool to identify and quantify phase II pharmaceutical metabolites in reclaimed water. The resulting data confirmed the presence of acetyl-sulfamethoxazole and sulfamethoxazole glucuronide in reclaimed water. To my knowledge, this is the first known report of sulfamethoxazole glucuronide surviving intact through wastewater treatment plants and occurring in environmental water samples. Finally, five bioaccumulative pharmaceuticals including caffeine, carbamazepine, diltiazem, diphenhydramine and ibuprofen detected in reclaimed water were investigated regarding the acute and chronic risks to aquatic organisms. The results indicated a low potential risk of carbamazepine even under the worst case exposure scenario. Given the dilution factors that affect environmental releases, the risk of exposure to carbamazepine will be even more reduced.
Resumo:
An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. ^ The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can't be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications.^ Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. ^ Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.^
Resumo:
The potential of solid phase microextraction (SPME) in the analysis of explosives is demonstrated. A sensitive, rapid, solventless and inexpensive method for the analysis of explosives and explosive odors from solid and liquid samples has been optimized using SPME followed by HPLC and GC/ECD. SPME involves the extraction of the organic components in debris samples into sorbent-coated silica fibers, which can be transferred directly to the injector of a gas chromatograph. SPME/HPLC requires a special desorption apparatus to elute the extracted analyte onto the column at high pressure. Re suits for use of GC[ECD is presented and compared to the results gathered by using HPLC analysis. The relative effects of controllable variables including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time have been optimized for various high explosives.
Resumo:
A comprehensive forensic investigation of sensitive ecosystems in the Everglades Area is presented. Assessing the background levels of contamination in these ecosystems represents a vital resource to build up forensic evidence required to enforce future environmental crimes within the studied areas. This investigation presents the development and validation of a fractionation and isolation method for two families of herbicides commonly applied in the vicinity of the study area, including phenoxy acids like 2,4-D, MCPA, and silvex; as well as the most common triazine-based herbicides like atrazine, prometyne, simazine and related metabolites like DIA and DEA. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used to isolate the analytes from abiotic matrices containing large amounts of organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-), and Chemical Ionization in the positive mode (APCI+) were used to perform the characterization of the herbicides of interest.
Resumo:
Residents of certain areas of Tanzania are exposed to mycotoxins through the consumption of contaminated maize based foods. In this study, 101 maize based porridge samples were collected from villages of Nyabula, Kikelelwa and Kigwa located in different agro-ecological zones of Tanzania. The samples were collected at three time points (time point 1, during maize harvest; time point 2, 6 months after harvest; time point 3, 12 months after harvest) over a 1-year period. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used to detect and quantify 9 mycotoxins: aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), fumonisin B1 (FB1), fumonisin B2 (FB2), deoxynivalenol (DON), ochratoxin A (OTA) and zearaleneone (ZEN) in the samples following a QuEChERS extraction method. Eighty two percent of samples were co-contaminated with more than one group of mycotoxins. Fumonisins (FB1 + FB2) had the highest percentage occurrence in all 101 samples (100%) whereas OTA had the lowest (5%). For all three villages the mean concentration of FB1 was lowest in samples taken from time point 2. Conversely, In Kigwa village there was a distinct trend that AFB1 mean concentration was highest in samples taken from time point 2. DON concentration did not differ greatly between time points but the percentage occurrence varied between villages, most notably in Kigwa where 0% of samples tested positive. ZEN occurrence and mean concentration was highest in Kikelelwa. The results suggest that mycotoxin contamination in maize can vary based on season and agro-ecological zones. The high occurrence of multiple mycotoxins found in maize porridge, a common weaning food in Tanzania, presents a potential increase in the risk of exposure and significant health implications in children.
Resumo:
Mercury scrubbing from gas streams using a supported 1-butyl-3-methylimidazolium chlorocuprate(II) ionic liquid ([C4mim]2[Cu2Cl6]) has been studied using operando EXAFS. Initial oxidative capture as [HgCl3]– anions was confirmed, this was then followed by the unanticipated generation of mercury(I) chloride through comproportionation with additional mercury from the gas stream. Combining these two mechanisms leads to net one electron oxidative extraction of mercury from the gas with increased potential capacity and efficiency for supported ionic liquid mercury scrubbers.
Resumo:
Chemical speciation in foodstuffs is of uttermost importance since it is nowadays recognized that both toxicity and bioavailability of an element depend on the chemical form in which the element is present. Regarding arsenic, inorganic species are classified as carcinogenic while organic arsenic, such as arsenobetaine (AsB) or arsenocholine (AsC), is considered less toxic or even non-toxic. Coupling a High Performance Liquid Chromatographer (HPLC) with an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) combines the power of separation of the first with the selectivity and sensitivity of the second. The present work aims at developing a method, using HPLC-ICP-MS technique, to identify and quantify the chemical species of arsenic present in two food matrices, rice and fish. Two extraction methods, ultrasound and microwave, and different settings were studied. The best method was chosen based on recovery percentages. To ensure that no interconversion of species was occurring, individual spikes of each species of arsenic were made in both matrices and recovery rates were calculated. To guaranty accurate results reference material BCR-627 TUNA FISH, containing certified values for AsB and DMA, was analyzed. Chromatographic separation was achieved using an anion exchange column, HAMILTON-PRP X-100, which allowed to separate the four arsenic species for which standards were available (AsB, dimethylarsenic (DMA), arsenite (AsIII), arsenate (AsV). The mobile phase was chosen based on scientific literature and adjusted to laboratory conditions. Different gradients were studied. As a result we verified that the arsenic species present in both matrices were not the same. While in fish 90% of the arsenic present was in the form of arsenobetaine, in rice 80% of arsenic was present as DMA and 20% as inorganic arsenic.
Resumo:
Agricultural crops can be damaged by funguses, insects, worms and other organisms that cause diseases and decrease the yield of production. The effect of these damaging agents can be reduced using pesticides. Among them, triazole compounds are effective substances against fungus; for example, Oidium. Nevertheless, it has been detected that the residues of these fungicides in foods as well as in derivate products can affect the health of the consumers. Therefore, the European Union has established several regulations fixing the maximum residue of pesticide levels in a wide range of foods trying to assure the consumer safety. Hence, it is very important to develop adequate methods to determine these pesticide compounds. In most cases, gas or liquid chromatographic (GC, LC) separations are used in the analysis of the samples. But firstly, it is necessary to use proper sample treatments in order to preconcentrate and isolate the target analytes. To reach this aim, microextraction techniques are very effective tools; because allow to do both preconcentration and extraction of the analytes in one simple step that considerably reduces the source of errors. With these objectives, two remarkable techniques have been widely used during the last years: solid phase microextraction (SPME) and liquid phase microextraction (LPME) with its different options. Both techniques that avoid the use or reduce the amount of toxic solvents are convenient coupled to chromatographic equipments providing good quantitative results in a wide number of matrices and compounds. In this work simple and reliable methods have been developed using SPME and ultrasound assisted emulsification microextraction (USAEME) coupled to GC or LC for triazole fungicides determination. The proposed methods allow confidently determine triazole concentrations of μg L‐1 order in different fruit samples. Chemometric tools have been used to accomplish successful determinations. Firstly, in the selection and optimization of the variables involved in the microextraction processes; and secondly, to overcome the problems related to the overlapping peaks. Different fractional factorial designs have been used for the screening of the experimental variables; and central composite designs have been carried out to get the best experimental conditions. Trying to solve the overlapping peak problems multivariate calibration methods have been used. Parallel Factor Analysis 2 (PARAFAC2), Multivariate Curve Resolution (MCR) and Parallel Factor Analysis with Linear Dependencies (PARALIND) have been proposed, the adequate algorithms have been used according to data characteristics, and the results have been compared. Because its occurrence in Basque Country and its relevance in the production of cider and txakoli regional wines the grape and apple samples were selected. These crops are often treated with triazole compounds trying to solve the problems caused by the funguses. The peel and pulp from grape and apple, their juices and some commercial products such as musts, juice and cider have been analysed showing the adequacy of the developed methods for the triazole determination in this kind of fruit samples.
Resumo:
A rapid and efficient Dispersive Liquid–Liquid Microextraction (DLLME) followed by Laser-Induced Breakdown Spectroscopy detection (LIBS) was evaluated for simultaneous determination of Cr, Cu, Mn, Ni and Zn in water samples. Metals in the samples were extracted with tetrachloromethane as pyrrolidinedithiocarbamate (APDC) complexes, using vortex agitation to achieve dispersion of the extractant solvent. Several DLLME experimental factors affecting extraction efficiency were optimized with a multivariate approach. Under optimum DLLME conditions, DLLME-LIBS method was found to be of about 4.0–5.5 times more sensitive than LIBS, achieving limits of detection of about 3.7–5.6 times lower. To assess accuracy of the proposed DLLME-LIBS procedure, a certified reference material of estuarine water was analyzed.