899 resultados para LDPE Blends


Relevância:

20.00% 20.00%

Publicador:

Resumo:

用DSC和WAXD方法考察了高密度聚乙烯和低密度聚乙烯共混体系(HDPE/LDPE)的结晶性能。结果表明,在共混物中HDPE含量大于50%时,共混物只出现HDPE的熔融峰,且熔融温度随HDPE含量减小而降低;LDPE含量大于50%时,DSC图上只出现熔点介于HDPE和LDPE之间的新熔融峰。DSC和WAXD法所测结晶度均偏离共混物的线性加和值,而晶胞参数则随共混物组成变化出现最小值,表明HDPE和LDPE可以形成共晶相容体系。Raman光谱测得介晶相αb值的膨胀,支持这一观点。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

用DSC方法研究了LDPE/EPO共混体系的等温及非等温结晶动力学,对LDPE/EPO共混体系的等温结晶动力学研究表明,共混物是三维生长的异相成核,共混物在各个结晶温度下的结晶过程都是以方式K_g(Ⅱ)进行的.采用联系Avrami方程和Ozawa方程导出的新非等温结晶动力学方程,处理了LDPE/EPO共混体系,得到了非等温结晶过程的一些基本参数,新方程很好地描述了此共混体系的非等温结晶动力学过程.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DDV、DSC、WAXD、萃取和Raman光谱实验表明,在所有组成下,LDPE/EPO共混体系共晶相容.WAXD法测定表明,LDPE/EPO共混体系的结晶度随EPO组分含量的增加而降低,EPO未能进入LDPE晶胞中.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

用动态粘弹谱仪和DSC研究了聚丙烯/三元乙丙橡胶(PP/EPDM)的动态力学性能,考察了EPDM对PP/LDPE(低密度聚乙烯)的力学行为的影响。结果表明,EPDM对PP有增塑作用,在PP/LDPE/EPDM共混物中,PP和LDPE的非晶部分与EPDM具有部分相容性;PP有两个结晶温度(T_c),较低的一个T_c随共混物中EPDM含量(5~25质量份)的增加逐渐向更低温度区迁移,说明EPDM具有加快冷却速率的作用。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unique crystalline morphologies of solution-cast films of HDPE/iPP blends were investigated by means of transmission electron microscopy (TEM), electron diffraction, metal shadowing and specimen-tilt techniques. The unique morphologies come from an epitaxial crystallization of HDPE on iPP. The contact planes of the two kinds of crystals are (100) of HDPE and (010) of iPP, while the intercrossing angle between their chain axes is about 50-degrees. The HDPE existed with different crystalline morphologies in the two kinds of crystalline regions of iPP spherulites, i.e. cross-hatched and single-crystal-type structures. Based on structural analysis, two models of epitaxial growth of HDPE on iPP are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three pairs of polyimide/polyimide blends (50/50 wt%) with different molecular structures were prepared by two ways, i.e. mixing of the polyamic acid precursors with subsequent imidization, and direct solution mixing of the polyimides. The blends were studied with DMA technique. The results obtained show that all the blends prepared with these two different ways are miscible, as there existed only one glass transition temperature(Tg) for all the blends. It is suggested that the miscibility of these polyimide/polyimide blends is a result of the strong inter-molecular charge-transfer interaction between the chains of their components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization and melting behaviour of poly(aryl-ether-ether-ketone) (PEEK) in blends with another polymer of the same family containing a bulky pendant phenolphthalein group (PEK-C) have been investigated by thermal methods. The small interaction energy density of the polymer pair (B = -8.99 J/cm3), evaluated from equilibrium melting point depression, is consistent with the T(g) data that indicate partial miscibility in the melt. Two conjugated phases are in equilibrium at 430-degrees-C: one is crystallizable and contains about 35 wt% of PEK-C; the other, containing only 15 wt% of PEEK, does not form crystals upon cooling and it interferes with the development of spherulites in the sample. The analysis of kinetic data according to nucleation theories shows that crystallization of PEEK in the explored temperature range takes place in Regime III and that a transition to Regime II might be a consequence of an increase in the amount of non-crystallizable molecules in the PEEK-rich phase. A composition independent value of the end surface free energy of PEEK lamellae has been derived from kinetic data (sigma-e = 40 +/- 4 erg/cm2) in excellent agreement with previous thermodynamic estimates. A new value for the equilibrium melting temperature of PEEK (T(m)-degrees = 639 K) has been obtained; it is about 30-degrees-C lower than the commonly accepted value and it explains better the "memory effect" in the crystallization from the melt of this high performance polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toughening effect of the separate phases of ethylene/propylene block copolymers and their blends was studied by scanning electron microscopy (SEM). The results obtained show that the interfacial adhesion between separate phases and the isotactic polypropene (iPP) matrix in ethylene/propylene block copolymers is strong at room temperature, but poor at low temperature; specimens exhibit tearing of separate phases during fracture at room temperature, but interfacial fracture between separate phases and the iPP matrix at low temperature. From the characteristics of fractographs of ethylene/propylene block copolymers and their blends, it could be concluded that the separate phases improve the toughness of specimens in several ways: they promote the plastic deformation of the iPP, and they can be deformed and fractured themselves during the fracture process. However, it was shown that the plastic deformation processes, such as multiple-crazing, shear yielding, etc. of the matrix are the dominant mechanisms of energy absorption in highly toughened ethylene/propylene block copolymers and their blends. The deformation and fracture of separate phases are only of secondary importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends with a liquid-crystal polymers (LCP) as one component show, in general, very interesting properties. Reduction of shear visocity and improvement of mechanical properties are very remarkable. High melting temperatures and high costs of the LCP limit the use of these blends. A new class of thermotropic LCPs with flexible spaces, with relatively low melting temperatures, can overcome the first problem. In this work, rheological and mechanical properties of blends of polypropylene with low contents of this LCP are presented. Torque during extrusion and viscosity decrease with LCP content. Elastic modulus is remarkably increased when the LCP phase is oriented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of applying the method of factor analysis to X-ray diffraction diagrams of binary blends of polypropylene and ethylene-propylene-diene terpolymer (PP/EPDM) was examined. The result of mathematical treatment was satisfactory. The number of scattering species and their concentrations in six kinds of PP/EPDM blends were determined. The separation of the spectral peaks of each species in the blends, contributing spectral intensities, was carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal behaviour of ramified domains in the late stage of spinodal phase separation in a binary polymer blend of poly(vinyl acetate) with poly(methyl methacrylate) was investigated by optical microscopic method. In the late stage of the spinodal decomposition, the fractal dimension D is about 1.64. It implies that some anomalous properties of irregular structure probably may be explained by fractal concepts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of micelle on crystallization behaviour of dilute poly(methyl methacrylate-b-tetrahydrofuran) diblock copolymer/tetrahydrofuran homopolymer, dilute poly (ethylene-b-styrene-b-ethylene) triblock copolymer/ethylene homopolymer solutions has been studied. The results show that with the structural teansitions from spherical to nonspherical micelle in the blends, great changes in the nucleation and spherulite morphologies take place.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene oxide) (PEO) was found to be miscible with uncured epoxy resin, diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature (T(g)) in each blend. However, PEO with M(n) = 20 000 was judged to be immiscible with the highly amine-crosslinked epoxy resin (ER). The miscibility and morphology of the ER/PEO blends was remarkably affected by crosslinking. It was observed that phase separation in the ER/PEO blends occurred as the crosslinking progressed. This is considered to be due to the dramatic change in the chemical and physical nature of ER during the crosslinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of miscible phenolphthalein poly(ether ether ketone)/phenoxy (PEK-C/phenoxy) blends have been measured by dynamic mechanical analysis and tensile testing. The blends were found to have single glass transition temperatures (T(g)) that vary continuously with composition. The tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for tensile strength. The tensile strengths of the 90/10 and 75/25 PEK-C/phenoxy blends are higher than those of both the pure components. Embrittlement, or transition from the brittle to the ductile mode of failure, occurs in the composition range of 50-25 wt% PEK-C. These observations suggest that mixing on the segmental level has occurred and that there is enough interaction between the components to decrease its internal mobility significantly. PEK-C was also found to be miscible with the epoxy monomer, diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature (T(g)) within the whole composition range. Miscibility between PEK-C and DGEBA could be considered to be due mainly to entropy. However, PEK-C was judged to be immiscible with the diaminodiphenylmethane-curved epoxy resin (DDM-cured ER). It was observed that the PEK-C/ER blends have two T(g), which remain invariant with composition and are almost the same as those of the pure components, respectively. Scanning electron microscopy showed that the PEK-C/ER blends have a two-phase structure. The different miscibility with PEK-C between DGEBA and the DDM-cured ER is considered to be due to the dramatic change in the chemical and physical nature of ER after curing.