374 resultados para Koillinen, Mikael


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arctic seabirds are exposed to a wide range of halogenated organic contaminants (HOCs). Exposure occurs mainly through food intake, and many pollutants accumulate in lipid-rich tissues. Little is known about how HOCs are biotransformed in arctic seabirds. In this study, we characterized biotransformation enzymes in chicks of northern fulmars (Fulmarus glacialis) and black-legged kittiwakes (Rissa tridactyla) from Kongsfjorden (Svalbard, Norway). Phase I and II enzymes were analyzed at the transcriptional, translational and activity levels. For gene expression patterns, quantitative polymerase chain reactions (qPCR), using gene-sequence primers, were performed. Protein levels were analyzed using immunochemical assays of western blot with commercially available antibodies. Liver samples were analyzed for phase I and II enzyme activities using a variety of substrates including ethoxyresorufin (cytochrome (CYP)1A1/1A2), pentoxyresorufin (CYP2B), methoxyresorufin (CYP1A), benzyloxyresorufin (CYP3A), testosterone (CYP3A/CYP2B), 1-chloro-2,4-nitrobenzene (CDNB) (glutathione S-transferase (GST)) and 4-nitrophenol (uridine diphosphate glucuronyltransferase (UDPGT)). In addition, the hydroxylated (OH-) polychlorinated biphenyls (PCBs) were analyzed in the blood, liver and brain tissue, whereas the methylsulfone (MeSO2-) PCBs were analyzed in liver tissue. Results indicated the presence of phase I (CYP1A4/CYP1A5, CYP2B, and CYP3A) and phase II (GST and UDPGT) enzymes at the activity, protein and/or mRNA level in both species. Northern fulmar chicks had higher enzyme activity than black-legged kittiwake chicks. This in combination with the higher XOH-PCB to parent PCB ratios suggests that northern fulmar chicks have a different biotransformation capacity than black-legged kittiwake chicks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marine transgression Into the Baltic Sea through the Great Belt took place around 9,370 calibrated C-14-years B.P. The sedimentary sequence from the early brackish phase and the change to marine conditions has been investigated in detail through C-14-datings, and oxygen and carbon isotope measurements, and is interpreted by comparison with modern analogs. The oldest brackish sediments are the strongly laminated clays and silts rich in organic carbon followed by non-laminated heavily bioturbated silts. The bedding and textural characteristics and stable isotope analyses on Ammonia beccarii (dextral) and A. beccarii (sinistral) show that the deposltlonal conditions respond to a change at about 9,100 cal. a B.P. from an unstratified brackish water environment in the initial stage of the Littorina Transgression to a thermohaline layered milieu in the upper unit. The oxygen isotope results indicate that the bottom waters of this latter period had salinities and temperatures comparable to the present day Kiel Bay waters. The isotopic composition of the total organic carbon and the d13C-values of A. beccarii reveal a gradual change from an initially lacustrine/terrestrial provenance toward a brackish/marine dominated depositional environment. A stagnation of the sea level at around 9,100 to 9,400 B.P. is indicated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a strong and growing worldwide research on exploring renewable energy resources. Solar energy is the most abundant, inexhaustible and clean energy source, but there are profound material challenges to capture, convert and store solar energy. In this work, we explore 3C-SiC as an attractive material towards solar-driven energy conversion applications: (i) Boron doped 3C-SiC as candidate for an intermediate band photovoltaic material, and (ii) 3C-SiC as a photoelectrode for solar-driven water splitting. Absorption spectrum of boron doped 3C-SiC shows a deep energy level at ~0.7 eV above the valence band edge. This indicates that boron doped 3C-SiC may be a good candidate as an intermediate band photovoltaic material, and that bulk like 3C-SiC can have sufficient quality to be a promising electrode for photoelectrochemical water splitting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuronal isoform of nitric oxide synthase (nNOS) is highly expressed in mammalian skeletal muscle, but its functional role has not been defined. NO has been implicated in the local metabolic regulation of blood flow in contracting skeletal muscle in part by antagonizing sympathetic vasoconstriction. We therefore hypothesized that nNOS in skeletal muscle is the source of the NO mediating the inhibition of sympathetic vasoconstriction in contracting muscle. In the mdx mouse, a model of Duchenne muscular dystrophy in which dystrophin deficiency results in greatly reduced expression of nNOS in skeletal muscle, we found that the normal ability of skeletal muscle contraction to attenuate α-adrenergic vasoconstriction is defective. Similar results were obtained in mutant mice that lack the gene encoding nNOS. Together these data suggest a specific role for nNOS in the local metabolic inhibition of α-adrenergic vasoconstriction in active skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinetic anomalies in protein folding can result from changes of the kinetic ground states (D, I, and N), changes of the protein folding transition state, or both. The 102-residue protein U1A has a symmetrically curved chevron plot which seems to result mainly from changes of the transition state. At low concentrations of denaturant the transition state occurs early in the folding reaction, whereas at high denaturant concentration it moves close to the native structure. In this study we use this movement to follow continuously the formation and growth of U1A's folding nucleus by φ analysis. Although U1A's transition state structure is generally delocalized and displays a typical nucleation–condensation pattern, we can still resolve a sequence of folding events. However, these events are sufficiently coupled to start almost simultaneously throughout the transition state structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exogenous application of gangliosides to cells affects many cellular functions. We asked whether these effects could be attributed to the influence of gangliosides on the properties of sphingolipid–cholesterol microdomains on the plasma membrane, also termed rafts. The latter are envisaged as lateral assemblies of sphingolipids (including gangliosides), cholesterol, and a specific set of proteins. Rafts have been implicated in processes such as membrane trafficking, signal transduction, and cell adhesion. Recently, using a chemical cross-linking approach with Madin-Darby canine kidney (MDCK) cells permanently expressing a GPI-anchored form of growth hormone decay accelerating factor (GH-DAF) as a model system, we could show that GPI-anchored proteins are clustered in rafts in living cells. Moreover, this clustering was dependent on the level of cholesterol in the cell. Here we show that incubation of MDCK cells with gangliosides abolished subsequent chemical cross-linking of GH-DAF. Furthermore, insertion of gangliosides into the plasma membrane of MDCK GH-DAF cells renders GH-DAF soluble when subjected to extraction with Triton X-114 at 4°C. Our data suggest that exogenous application of gangliosides displaces GPI-anchored proteins from sphingolipid–cholesterol microdomains in living cells.