733 resultados para KLEBSIELLA PNEUMONIAE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relevance of a postantibiotic effect in the treatment of pneumococcal meningitis was evaluated in a rabbit model. After administration of a single intravenous bolus of ampicillin at various dosages, such an effect was observed in all animals. The duration of this effect in vivo (2.5-18 hr) was consistently longer than that in vitro (1-4.3 hr); however, in rabbits the postantibiotic effect was eliminated by the administration of intravenous plus intracisternal beta-lactamase. In an assessment of the potential therapeutic benefit of the postantibiotic effect, the efficacy to two regimens of treatment with different intervals between doses was compared. One group of animals received ampicillin every 4 hr and another every 12 hr. With sufficiently high doses, drug concentrations in cerebrospinal fluid exceeded the minimal bactericidal concentration for most of the 4-hr interval but for only about one-third of the 12-hr interval. The rate of cure was similar for the two regimens and approximated 100% when peak drug concentrations in cerebrospinal fluid exceeded the minimal bactericidal concentration by at least 10-fold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to define the characteristics of the antibacterial activity of beta-lactam antibiotics in the treatment of bacterial meningitis, the relationship between cerebrospinal fluid (CSF) drug concentrations and the rate of bacterial killing was investigated for penicillin G and four new cephalosporins in an animal model of meningitis due to Streptococcus pneumoniae. All five drugs showed a significant correlation between increasing drug concentrations in CSF and increasing bactericidal rates. Minimal activity was observed in CSF at drug concentrations of approximately the broth minimal bactericidal concentration (MBC). Maximal activity occurred with CSF concentrations 10-30 times higher. In vitro tests did not reproduce the unique correlation of increasing drug concentrations and killing activity found in vivo. When evaluating new beta-lactam antibiotics for the treatment of bacterial meningitis, it is reasonable to establish a minimum standard of CSF drug concentrations of greater than or equal to 30 times the MBC against the infecting organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colonization with more than one distinct strain of the same species, also termed cocolonization, is a prerequisite for horizontal gene transfer between pneumococcal strains that may lead to change of the capsular serotype. Capsule switch has become an important issue since the introduction of conjugated pneumococcal polysaccharide vaccines. There is, however, a lack of techniques to detect multiple colonization by S. pneumoniae strains directly in nasopharyngeal samples. Two hundred eighty-seven nasopharyngeal swabs collected during the prevaccine era within a nationwide surveillance program were analyzed by a novel technique for the detection of cocolonization, based on PCR amplification of a noncoding region adjacent to the pneumolysin gene (plyNCR) and restriction fragment length polymorphism (RFLP) analysis. The numbers of strains and their relative abundance in cocolonized samples were determined by terminal RFLP. The pneumococcal carriage rate found by PCR was 51.6%, compared to 40.0% found by culture. Cocolonization was present in 9.5% (10/105) of samples, most (9/10) of which contained two strains in a ratio of between 1:1 and 17:1. Five of the 10 cocolonized samples showed combinations of vaccine types only (n = 2) or combinations of nonvaccine types only (n = 3). Carriers of multiple pneumococcal strains had received recent antibiotic treatment more often than those colonized with a single strain (33% versus 9%, P = 0.025). This new technique allows for the rapid and economical study of pneumococcal cocolonization in nasopharyngeal swabs. It will be valuable for the surveillance of S. pneumoniae epidemiology under vaccine selection pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycerol is one of the few carbon sources that can be utilized by Mycoplasma pneumoniae. Glycerol metabolism involves uptake by facilitated diffusion, phosphorylation, and the oxidation of glycerol 3-phosphate to dihydroxyacetone phosphate, a glycolytic intermediate. We have analyzed the expression of the genes involved in glycerol metabolism and observed constitutive expression irrespective of the presence of glycerol or preferred carbon sources. Similarly, the enzymatic activity of glycerol kinase is not modulated by HPr-dependent phosphorylation. This lack of regulation is unique among the bacteria for which glycerol metabolism has been studied so far. Two types of enzymes catalyze the oxidation of glycerol 3-phosphate: oxidases and dehydrogenases. Here, we demonstrate that the enzyme encoded by the M. pneumoniae glpD gene is a glycerol 3-phosphate oxidase that forms hydrogen peroxide rather than NADH(2). The formation of hydrogen peroxide by GlpD is crucial for cytotoxic effects of M. pneumoniae. A glpD mutant exhibited a significantly reduced formation of hydrogen peroxide and a severely reduced cytotoxicity. Attempts to isolate mutants affected in the genes of glycerol metabolism revealed that only the glpD gene, encoding the glycerol 3-phosphate oxidase, is dispensable. In contrast, the glpF and glpK genes, encoding the glycerol facilitator and the glycerol kinase, respectively, are essential in M. pneumoniae. Thus, the enzymes of glycerol metabolism are crucial for the pathogenicity of M. pneumoniae but also for other essential, yet-to-be-identified functions in the M. pneumoniae cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to identify optimal therapy for children with bacterial pneumonia, Pakistan's ARI Program, in collaboration with the National Institute of Health (NIH), Islamabad, undertook a national surveillance of antimicrobial resistance in S. pneumoniae and H. influenzae. The project was carried out at selected urban and peripheral sites in 6 different regions of Pakistan, in 1991–92. Nasopharyngeal (NP) specimens and blood cultures were obtained from children with pneumonia diagnosed in the outpatient clinic of participating facilities. Organisms were isolated by local hospital laboratories and sent to NIH for confirmation, serotyping and antimicrobial susceptibility testing. Following were the aims of the study (i) to determine the antimicrobial resistance patterns of S. pneumoniae and H. influenzae in children aged 2–59 months; (ii) to determine the ability of selected laboratories to identify and effectively transport isolates of S. pneumoniae and H. influenzae cultured from nasopharyngeal and blood specimens; (iii) to validate the comparability of resistance patterns for nasopharyngeal and blood isolates of S. pneumoniae and H. influenzae from children with pneumonia; and (iv) to examine the effect of drug resistance and laboratory error on the cost of effectively treating children with ARI. ^ A total of 1293 children with ARI were included in the study: 969 (75%) from urban areas and 324 (25%) from rural parts of the country. Of 1293, there were 786 (61%) male and 507 (39%) female children. The resistance rate of S. pneumoniae to various antibiotics among the urban children with ARI was: TMP/SMX (62%); chloramphenicol (23%); penicillin (5%); tetracycline (16%); and ampicillin/amoxicillin (0%). The rates of resistance of H. influenzae were higher than S. pneumoniae: TMP/SMX (85%); chloramphenicol (62%); penicillin (59%); ampicillin/amoxicillin (46%); and tetracycline (100%). There were similar rates of resistance to each antimicrobial agent among isolates from the rural children. ^ Of a total 614 specimens that were tested for antimicrobial susceptibility, 432 (70.4%) were resistant to TMP/SMX and 93 (15.2%) were resistant to antimicrobial agents other than TMP/SMX viz. ampicillin/amoxicillin, chloramphenicol, penicillin, and tetracycline. ^ The sensitivity and positive predictive value of peripheral laboratories for H. influenzae were 99% and 65%, respectively. Similarly, the sensitivity and positive predictive value of peripheral laboratory tests compared to gold standard i.e. NIH laboratory, for S. pneumoniae were 99% and 54%, respectively. ^ The sensitivity and positive predictive value of nasopharyngeal specimens compared to blood cultures (gold standard), isolated by the peripheral laboratories, for H. influenzae were 88% and 11%, and for S. pneumoniae 92% and 39%, respectively. (Abstract shortened by UMI.)^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus pneumoniae is an important cause of bacterial meningitis and pneumonia but usually colonizes the human nasopharynx harmlessly. As this niche is simultaneously populated by other bacterial species, we looked for a role and pathway of communication between pneumococci and other species. This paper shows that two proteins of non-encapsulated S. pneumoniae, AliB-like ORF 1 and ORF 2, bind specifically to peptides matching other species resulting in changes in the pneumococci. AliB-like ORF 1 binds specifically peptide SETTFGRDFN, matching 50S ribosomal subunit protein L4 of Enterobacteriaceae, and facilitates upregulation of competence for genetic transformation. AliB-like ORF 2 binds specifically peptides containing sequence FPPQS, matching proteins of Prevotella species common in healthy human nasopharyngeal microbiota. We found that AliB-like ORF 2 mediates the early phase of nasopharyngeal colonization in vivo. The ability of S. pneumoniae to bind and respond to peptides of other bacterial species occupying the same host niche may play a key role in adaptation to its environment and in interspecies communication. These findings reveal a completely new concept of pneumococcal interspecies communication which may have implications for communication between other bacterial species and for future interventional therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heteroresistance to penicillin in Streptococcus pneumoniae is the ability of subpopulations to grow at a higher antibiotic concentration than expected from the minimal inhibitory concentration (MIC). This may render conventional resistance testing unreliable and lead to therapeutic failure. We investigated the role of the primary β-lactam resistance determinants, penicillin binding proteins PBP2b and PBP2x and secondary resistance determinant PBP1a in heteroresistance to penicillin. Transformants containing PBP genes from heteroresistant strain Spain(23F)2349 in non-heteroresistant strain R6 background were tested for heteroresistance by population analysis profiling (PAP). We found that pbp2x, but not pbp2b or pbp1a alone, conferred heteroresistance to R6. However, a change of pbp2x expression is not observed and therefore expression does not correlate with an increased proportion of resistant subpopulations. Additional ciaR disruption mutants which have been described to mediate PBP-independent β-lactam resistance revealed no heteroresistant phenotype by PAP.We also showed, that the highly resistant subpopulations (HOM*) of transformants containing low affinity pbp2x undergo an increase in resistance upon selection on penicillin plates which partially reverts after passaging on selection-free medium. Shotgun proteomic analysis showed an upregulation of phosphate ABC transporter subunit proteins pstS, phoU, pstB and pstC in these highly resistant subpopulations.In conclusion, the presence of low affinity pbp2x enables certain pneumococcal colonies to survive in the presence of beta lactams. Upregulation of phosphate ABC transporter genes may represent a reversible adaption to antibiotic stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll-like receptor-2 (TLR2) mediates host responses to gram-positive bacterial wall components. TLR2 function was investigated in a murine Streptococcus pneumoniae meningitis model in wild-type (wt) and TLR2-deficient (TLR2(-/-)) mice. TLR2(-/-) mice showed earlier time of death than wt mice (P<.02). Plasma interleukin-6 levels and bacterial numbers in blood and peripheral organs were similar for both strains. With ceftriaxone therapy, none of the wt but 27% of the TLR2(-/-) mice died (P<.04). Beyond 3 hours after infection, TLR2(-/-) mice had higher bacterial loads in brain than did wt mice, as assessed with luciferase-tagged S. pneumoniae by means of a Xenogen-CCD (charge-coupled device) camera. After 24 h, tumor necrosis factor activity was higher in cerebrospinal fluid of TLR2(-/-) than wt mice (P<.05) and was related to increased blood-brain barrier permeability (Evans blue staining, P<.02). In conclusion, the lack of TLR2 was associated with earlier death from meningitis, which was not due to sepsis but to reduced brain bacterial clearing, followed by increased intrathecal inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BackgroundThe polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur.ResultsHere, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater.ConclusionsWe identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surrounding capsule of Streptococcus pneumoniae has been identified as a major virulence factor and is targeted by pneumococcal conjugate vaccines (PCV). However, nonencapsulated Streptococcus pneumoniae (Non-Ec-Sp) have also been isolated globally, mainly in carriage studies. It is unknown if Non-Ec-Sp evolve sporadically, if they have high antibiotic non-susceptiblity rates and a unique, specific gene content. Here, whole genome sequencing of 131 Non-Ec-Sp isolates sourced from 17 different locations around the world was performed. Results revealed a deep-branching classic lineage that is distinct from multiple sporadic lineages. The sporadic lineages clustered with a previously sequenced, global collection of encapsulated S. pneumoniae (Ec-Sp) isolates while the classic lineage is comprised mainly of the frequently identified multi-locus sequences types ST344 (n=39) and ST448 (n=40). All ST344 and nine ST448 isolates had high non-susceptiblity rates to β-lactams and other antimicrobials. Analysis of the accessory genome reveals that the classic Non-Ec-Sp contained an increased number of mobile elements, than Ec-Sp and sporadic Non-Ec-Sp. Performing adherence assays to human epithelial cells for selected classic and sporadic Non-Ec-Sp revealed that the presence of a integrative conjugative element (ICE) results in increased adherence to human epithelial cells (P=0.005). In contrast, sporadic Non-Ec-Sp lacking the ICE had greater growth in vitro possibly resulting in improved fitness. In conclusion, Non-Ec-Sp isolates from the classic lineage have evolved separately. They have spread globally, are well adapted to nasopharyngeal carriage and are able to coexist with Ec-Sp. Due to continued use of pneumococcal conjugate vaccines, Non-Ec-Sp may become more prevalent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CXCL14 is a chemokine with an atypical, yet highly conserved, primary structure characterized by a short N terminus and high sequence identity between human and mouse. Although it induces chemotaxis of monocytic cells at high concentrations, its physiological role in leukocyte trafficking remains elusive. In contrast, several studies have demonstrated that CXCL14 is a broad-spectrum antimicrobial peptide that is expressed abundantly and constitutively in epithelial tissues. In this study, we further explored the antimicrobial properties of CXCL14 against respiratory pathogens in vitro and in vivo. We found that CXCL14 potently killed Pseudomonas aeruginosa, Streptococcus mitis, and Streptococcus pneumoniae in a dose-dependent manner in part through membrane depolarization and rupture. By performing structure-activity studies, we found that the activity against Gram-negative bacteria was largely associated with the N-terminal peptide CXCL141-13. Interestingly, the central part of the molecule representing the β-sheet also maintained ∼62% killing activity and was sufficient to induce chemotaxis of THP-1 cells. The C-terminal α-helix of CXCL14 had neither antimicrobial nor chemotactic effect. To investigate a physiological function for CXCL14 in innate immunity in vivo, we infected CXCL14-deficient mice with lung pathogens and we found that CXCL14 contributed to enhanced clearance of Streptococcus pneumoniae, but not Pseudomonas aeruginosa. Our comprehensive studies reflect the complex bactericidal mechanisms of CXCL14, and we propose that different structural features are relevant for the killing of Gram-negative and Gram-positive bacteria. Taken together, our studies show that evolutionary-conserved features of CXCL14 are important for constitutive antimicrobial defenses against pneumonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Maculopapular or urticarial eruptions and erythema multiforme sometimes occur in patients affected with Mycoplasma pneumoniae respiratory infections. Further eruptions have also been reported. OBJECTIVE To review the literature addressing M. pneumoniae respiratory infection and rather unusual eruptions. METHODS Computer-based search in the U.S. National Library of Medicine database as well as in the search engine Google. RESULTS We found a possible relationship between M. pneumoniae infection and Fuchs' syndrome (n = 37), varicella-like eruptions (n = 8), Henoch-Schönlein syndrome and further leukocytoclastic vasculitides (n = 21) and erythema nodosum (n = 11). A temporal relationship was also observed with 2 cases of Gianotti-Crosti syndrome. Finally, there exists reasonable evidence that pityriasis rosea Gibert and pityriasis lichenoides et varioliformis acuta Mucha-Habermann are not associated with Mycoplasma infections. CONCLUSION This review implies that M. pneumoniae may cause, in addition to erythematous maculopapular (or urticarial) eruptions and erythema multiforme, Fuchs' syndrome and varicella-like eruptions. Furthermore, there is an intriguing link with leukocytoclastic vasculitides or erythema nodosum that deserves further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a collection of 58 snakes comprising predominantly Eurasian vipers in Switzerland, five snakes died unexpectedly during hibernation from 2009 to 2012. In one snake, organisms resembling chlamydiae were detected by immunohistochemistry in multiple histiocytic granulomas. Real-time quantitative PCR and microarray analysis were used to determine the presence of Chlamydia pneumoniae in tissue samples and cloacal/choanal swabs from snakes in the collection; 8/53 (15.1%) of the remaining snakes were positive. Although one infected snake had suppurative periglossitis, infection with C. pneumoniae did not appear to be associated with specific clinical signs in snakes. Of seven snakes treated with 5 mg/kg marbofloxacin IM once daily, five became PCR negative for C. pneumoniae following treatment, whereas one animal remained positive and one snake was lost to follow-up.