889 resultados para Ischemic stroke
Resumo:
BACKGROUND AND PURPOSE: To determine whether infarct core or penumbra is the more significant predictor of outcome in acute ischemic stroke, and whether the results are affected by the statistical method used. METHODS: Clinical and imaging data were collected in 165 patients with acute ischemic stroke. We reviewed the noncontrast head computed tomography (CT) to determine the Alberta Score Program Early CT score and assess for hyperdense middle cerebral artery. We reviewed CT-angiogram for site of occlusion and collateral flow score. From perfusion-CT, we calculated the volumes of infarct core and ischemic penumbra. Recanalization status was assessed on early follow-up imaging. Clinical data included age, several time points, National Institutes of Health Stroke Scale at admission, treatment type, and modified Rankin score at 90 days. Two multivariate regression analyses were conducted to determine which variables predicted outcome best. In the first analysis, we did not include recanalization status among the potential predicting variables. In the second, we included recanalization status and its interaction between perfusion-CT variables. RESULTS: Among the 165 study patients, 76 had a good outcome (modified Rankin score ≤2) and 89 had a poor outcome (modified Rankin score >2). In our first analysis, the most important predictors were age (P<0.001) and National Institutes of Health Stroke Scale at admission (P=0.001). The imaging variables were not important predictors of outcome (P>0.05). In the second analysis, when the recanalization status and its interaction with perfusion-CT variables were included, recanalization status and perfusion-CT penumbra volume became the significant predictors (P<0.001). CONCLUSIONS: Imaging prediction of tissue fate, more specifically imaging of the ischemic penumbra, matters only if recanalization can also be predicted.
Resumo:
Background and Purpose-Ever since the seminal description of ataxic hemiparesis contralateral to a pontine lesion by Miller-Fisher, the question of why contralesional crossing pontocerebellar fibers do not more frequently produce ipsilesional hemiataxia was raised. The few cases of "quadrataxic hemiparesis" or bilateral leg ataxia remain exceptions.Summary of Case-We report an even more unusual variant, namely "crossed ataxia" of the contralesional arm and the ipsilesional leg subsequent to an anteromedial pontine ischemic stroke.Conclusions-MRI diffusion tensor imaging tractography shows that caudal contralesional crossing pontocerebellar fibers (those for the leg) travel trough the lesion, whereas more rostral fibers (those for the arm) are spared. (Stroke. 2011; 42:e571-e573.)
Resumo:
Magnetic resonance imaging (MRI) and spectroscopy (MRS) allow establishing theanatomical evolution and neurochemical profiles of ischemic lesions. However onlylimited MRS studies have been reported to-date in mice due to the challenges ofMRS in small organs. The aim of the current work was to study the neurochemicaland imaging sequelae of ischemic stroke in a mouse model in a horizontal bore14.1 Tesla system.ICR-CD1 mice were subjected to 30 minute transient middle cerebral artery occlusion.The extent of the lesion was determined by MRI. The neurochemical profileconsisting of the concentrations of 22 metabolites was measured longitudinallyfollowing the recovery from ischemia at 3, 8 and 24h in the striatum.Our model produced very reproducible striatal lesions which began to appear onT2-weighted images 8h after ischemia. At 24h, they were well established andtheir size correlated with lesions measured by histology. Profound changes couldbe observed in the neurochemical profiles of the core of the striatal lesions as earlyas 3h post-ischemia, in particular, we observed elevated lactate levels, decreases inthe putative neuronal marker N-acetyl-aspartate and in glutamate, and a transienttwo-fold glutamine increase, likely linked to excitotoxic release of glutamate andconversion to glutamine. With further ischemia evolution, other changes appearedat later time-points, mainly decreases of metabolites, consistent with disruption ofcellular function. It is interesting to note that glutamine tended to return to basallevels at 24h.We conclude that early changes in markers of energy metabolism, glutamate excitotoxicityand neuronal viability can be detected with high precision non-invasively inmice following stroke. Such investigations should lead to a better understanding andinsight into the sequential early changes in the brain parenchyma after ischemia,which could be used e.g. for identifying new targets for neuroprotection.
Resumo:
OBJECT: Reversible cerebral vasoconstriction syndrome (RCVS) is described as a clinical and radiological entity characterized by thunderclap headaches, a reversible segmental or multifocal vasoconstriction of cerebral arteries with or without focal neurological deficits or seizures. The purpose of this study is to determine risk factors of poor outcome in patients presented a RCVS. METHODS: A retrospective multi-center review of invasive and non-invasive neurovascular imaging between January 2006 and January 2011 has identified 10 patients with criterion of reversible segmental vasoconstriction syndrome. Demographics data, vascular risks and evolution of each of these patients were analyzed. RESULTS: Seven of the ten patients were females with a mean age of 46 years. In four patients, we did not found any causative factors. Two cases presented RCVS in post-partum period between their first and their third week after delivery. The other three cases were drug-induced RCVS, mainly vaso-active drugs. Cannabis was found as the causative factor in two patient, Sumatriptan identified in one patient while cyclosporine was the causative agent in also one patient. The mean duration of clinical follow-up was 10.2 months (range: 0-28 months). Two patients had neurological sequelae: one patient kept a dysphasia and the other had a homonymous lateral hemianopia. We could not find any significant difference of the evolution between secondary RCVS and idiopathic RCVS. The only two factors, which could be correlated to the clinical outcome were the neurological status at admission and the presence of intraparenchymal abnormalities (ischemic stroke, hematoma) in brain imaging. CONCLUSIONS: Fulminant vasoconstriction resulting in progressive symptoms or death has been reported in exceptional frequency. Physicians had to remember that such evolution could happen and predict them by identifying all factors of poor prognosis (neurological status at admission, the presence of intraparenchymal abnormalities).
Resumo:
Version abregée L'ischémie cérébrale est la troisième cause de mort dans les pays développés, et la maladie responsable des plus sérieux handicaps neurologiques. La compréhension des bases moléculaires et anatomiques de la récupération fonctionnelle après l'ischémie cérébrale est donc extrêmement importante et représente un domaine d'intérêt crucial pour la recherche fondamentale et clinique. Durant les deux dernières décennies, les chercheurs ont tenté de combattre les effets nocifs de l'ischémie cérébrale à l'aide de substances exogènes qui, bien que testées avec succès dans le domaine expérimental, ont montré un effet contradictoire dans l'application clinique. Une approche différente mais complémentaire est de stimuler des mécanismes intrinsèques de neuroprotection en utilisant le «modèle de préconditionnement» : une brève insulte protège contre des épisodes d'ischémie plus sévères à travers la stimulation de voies de signalisation endogènes qui augmentent la résistance à l'ischémie. Cette approche peut offrir des éléments importants pour clarifier les mécanismes endogènes de neuroprotection et fournir de nouvelles stratégies pour rendre les neurones et la glie plus résistants à l'attaque ischémique cérébrale. Dans un premier temps, nous avons donc étudié les mécanismes de neuroprotection intrinsèques stimulés par la thrombine, un neuroprotecteur «préconditionnant» dont on a montré, à l'aide de modèles expérimentaux in vitro et in vivo, qu'il réduit la mort neuronale. En appliquant une technique de microchirurgie pour induire une ischémie cérébrale transitoire chez la souris, nous avons montré que la thrombine peut stimuler les voies de signalisation intracellulaire médiées par MAPK et JNK par une approche moléculaire et l'analyse in vivo d'un inhibiteur spécifique de JNK (L JNK) .Nous avons également étudié l'impact de la thrombine sur la récupération fonctionnelle après une attaque et avons pu démontrer que ces mécanismes moléculaires peuvent améliorer la récupération motrice. La deuxième partie de cette étude des mécanismes de récupération après ischémie cérébrale est basée sur l'investigation des bases anatomiques de la plasticité des connections cérébrales, soit dans le modèle animal d'ischémie transitoire, soit chez l'homme. Selon des résultats précédemment publiés par divers groupes ,nous savons que des mécanismes de plasticité aboutissant à des degrés divers de récupération fonctionnelle sont mis enjeu après une lésion ischémique. Le résultat de cette réorganisation est une nouvelle architecture fonctionnelle et structurelle, qui varie individuellement selon l'anatomie de la lésion, l'âge du sujet et la chronicité de la lésion. Le succès de toute intervention thérapeutique dépendra donc de son interaction avec la nouvelle architecture anatomique. Pour cette raison, nous avons appliqué deux techniques de diffusion en résonance magnétique qui permettent de détecter les changements de microstructure cérébrale et de connexions anatomiques suite à une attaque : IRM par tenseur de diffusion (DT-IR1V) et IRM par spectre de diffusion (DSIRM). Grâce à la DT-IRM hautement sophistiquée, nous avons pu effectuer une étude de follow-up à long terme chez des souris ayant subi une ischémie cérébrale transitoire, qui a mis en évidence que les changements microstructurels dans l'infarctus ainsi que la modification des voies anatomiques sont corrélés à la récupération fonctionnelle. De plus, nous avons observé une réorganisation axonale dans des aires où l'on détecte une augmentation d'expression d'une protéine de plasticité exprimée dans le cône de croissance des axones (GAP-43). En appliquant la même technique, nous avons également effectué deux études, rétrospective et prospective, qui ont montré comment des paramètres obtenus avec DT-IRM peuvent monitorer la rapidité de récupération et mettre en évidence un changement structurel dans les voies impliquées dans les manifestations cliniques. Dans la dernière partie de ce travail, nous avons décrit la manière dont la DS-IRM peut être appliquée dans le domaine expérimental et clinique pour étudier la plasticité cérébrale après ischémie. Abstract Ischemic stroke is the third leading cause of death in developed countries and the disease responsible for the most serious long-term neurological disability. Understanding molecular and anatomical basis of stroke recovery is, therefore, extremely important and represents a major field of interest for basic and clinical research. Over the past 2 decades, much attention has focused on counteracting noxious effect of the ischemic insult with exogenous substances (oxygen radical scavengers, AMPA and NMDA receptor antagonists, MMP inhibitors etc) which were successfully tested in the experimental field -but which turned out to have controversial effects in clinical trials. A different but complementary approach to address ischemia pathophysiology and treatment options is to stimulate and investigate intrinsic mechanisms of neuroprotection using the "preconditioning effect": applying a brief insult protects against subsequent prolonged and detrimental ischemic episodes, by up-regulating powerful endogenous pathways that increase resistance to injury. We believe that this approach might offer an important insight into the molecular mechanisms responsible for endogenous neuroprotection. In addition, results from preconditioning model experiment may provide new strategies for making brain cells "naturally" more resistant to ischemic injury and accelerate their rate of functional recovery. In the first part of this work, we investigated down-stream mechanisms of neuroprotection induced by thrombin, a well known neuroprotectant which has been demonstrated to reduce stroke-induced cell death in vitro and in vivo experimental models. Using microsurgery to induce transient brain ischemia in mice, we showed that thrombin can stimulate both MAPK and JNK intracellular pathways through a molecular biology approach and an in vivo analysis of a specific kinase inhibitor (L JNK1). We also studied thrombin's impact on functional recovery demonstrating that these molecular mechanisms could enhance post-stroke motor outcome. The second part of this study is based on investigating the anatomical basis underlying connectivity remodeling, leading to functional improvement after stroke. To do this, we used both a mouse model of experimental ischemia and human subjects with stroke. It is known from previous data published in literature, that the brain adapts to damage in a way that attempts to preserve motor function. The result of this reorganization is a new functional and structural architecture, which will vary from patient to patient depending on the anatomy of the damage, the biological age of the patient and the chronicity of the lesion. The success of any given therapeutic intervention will depend on how well it interacts with this new architecture. For this reason, we applied diffusion magnetic resonance techniques able to detect micro-structural and connectivity changes following an ischemic lesion: diffusion tensor MRI (DT-MRI) and diffusion spectrum MRI (DS-MRI). Using DT-MRI, we performed along-term follow up study of stroke mice which showed how diffusion changes in the stroke region and fiber tract remodeling is correlating with stroke recovery. In addition, axonal reorganization is shown in areas of increased plasticity related protein expression (GAP 43, growth axonal cone related protein). Applying the same technique, we then performed a retrospective and a prospective study in humans demonstrating how specific DTI parameters could help to monitor the speed of recovery and show longitudinal changes in damaged tracts involved in clinical symptoms. Finally, in the last part of this study we showed how DS-MRI could be applied both to experimental and human stroke and which perspectives it can open to further investigate post stroke plasticity.
Resumo:
OBJECTIVE: To define therapeutic strategy for management of patients with ischemic stroke due to a high probability of paradoxical embolism through a Patent Foramen Ovale (PFO). METHODS: Since 1988 all consecutive patients with cerebrovascular events and PFO from the Stroke Registry of our population-based primary-care center are prospectively studied and followed. Since 1992, among 118 patients with cryptogenic embolic brain infarct or transient ischemic attack (TIA) and PFO, 32 consecutive patients younger than 60 years who presented at least two of the following criteria were admitted for surgery: history of Valsalva strain before stroke (11); multiple clinical events (13); multiple infarcts on brain Magnetic Resonance Imaging (MRI) (15); atrial septal aneurysm (ASA) (16); large right-to-left shunt (> 50 microbubbles) (12). RESULTS: Operative time 135' +/- 33'. CPB time 34' +/- 14'. Aortic crossclamping time 16' +/- 6'. Post-operative bleeding 485 +/- 170 ml. No homologous blood transfusion required. No neurological, cardiac or renal complications. All patients were followed-up corresponding to a cumulative time of 601 patient-months. This revealed no recurrent vascular events nor silent new brain lesions on brain MRI. Systematic simultaneous contrast Trans Esophageal Echocardiography (TEE)-Trans Cranial Doppler showed a small residual interatrial shunt in two patients. CONCLUSION: Surgical closure of a patent foramen ovale can be accomplished with very low morbidity and reduce efficiently the risk of stroke recurrence. It seems to be the option of choice in selected patients with a higher (> 1.5%/year) risk of stroke recurrence.
Resumo:
BACKGROUND: No randomized study has yet compared efficacy and safety of aspirin and anticoagulants in patients with spontaneous dissection of the cervical carotid artery (sICAD). METHODS: Prospectively collected data from 298 consecutive patients with sICAD (56% men; mean age 46 +/- 10 years) treated with anticoagulants alone (n = 202) or aspirin alone (n = 96) were retrospectively analyzed. Admission diagnosis was ischemic stroke in 165, TIA in 37, retinal ischemia in 8, and local symptoms and signs (headache, neck pain, Horner syndrome, cranial nerve palsy) in 80 patients, while 8 patients were asymptomatic. Clinical follow-up was obtained after 3 months by neurologic examination (97% of patients) or structured telephone interview. Outcome measures were 1) new cerebral ischemic events, defined as ischemic stroke, TIA, or retinal ischemia, 2) symptomatic intracranial hemorrhage, and 3) major extracranial bleeding. RESULTS: During follow-up, ischemic events were rare (ischemic stroke, 0.3%; TIA, 3.4%; retinal ischemia, 1%); their frequency did not significantly differ between patients treated with anticoagulants (5.9%) and those treated with aspirin (2.1%). The same was true for hemorrhagic adverse events (anticoagulants, 2%; aspirin, 1%). New ischemic events were significantly more frequent in patients with ischemic events at onset (6.2%) than in patients with local symptoms or asymptomatic patients (1.1%). CONCLUSIONS: Within the limitations of a nonrandomized study, our data suggest that frequency of new cerebral and retinal ischemic events in patients with spontaneous dissection of the cervical carotid artery is low and probably independent of the type of antithrombotic treatment (aspirin or anticoagulants).
Resumo:
BACKGROUND: Thrombin potently activates platelets through the protease-activated receptor PAR-1. Vorapaxar is a novel antiplatelet agent that selectively inhibits the cellular actions of thrombin through antagonism of PAR-1. METHODS: We randomly assigned 26,449 patients who had a history of myocardial infarction, ischemic stroke, or peripheral arterial disease to receive vorapaxar (2.5 mg daily) or matching placebo and followed them for a median of 30 months. The primary efficacy end point was the composite of death from cardiovascular causes, myocardial infarction, or stroke. After 2 years, the data and safety monitoring board recommended discontinuation of the study treatment in patients with a history of stroke owing to the risk of intracranial hemorrhage. RESULTS: At 3 years, the primary end point had occurred in 1028 patients (9.3%) in the vorapaxar group and in 1176 patients (10.5%) in the placebo group (hazard ratio for the vorapaxar group, 0.87; 95% confidence interval [CI], 0.80 to 0.94; P<0.001). Cardiovascular death, myocardial infarction, stroke, or recurrent ischemia leading to revascularization occurred in 1259 patients (11.2%) in the vorapaxar group and 1417 patients (12.4%) in the placebo group (hazard ratio, 0.88; 95% CI, 0.82 to 0.95; P=0.001). Moderate or severe bleeding occurred in 4.2% of patients who received vorapaxar and 2.5% of those who received placebo (hazard ratio, 1.66; 95% CI, 1.43 to 1.93; P<0.001). There was an increase in the rate of intracranial hemorrhage in the vorapaxar group (1.0%, vs. 0.5% in the placebo group; P<0.001). CONCLUSIONS: Inhibition of PAR-1 with vorapaxar reduced the risk of cardiovascular death or ischemic events in patients with stable atherosclerosis who were receiving standard therapy. However, it increased the risk of moderate or severe bleeding, including intracranial hemorrhage. (Funded by Merck; TRA 2P-TIMI 50 ClinicalTrials.gov number, NCT00526474.).
Resumo:
Introduction: MCTI is used to assess acute ischemic stroke (AIS) patients.We postulated that use of MCTI improves patient outcome regardingindependence and mortality.Methods: From the ASTRAL registry, all patients with an AIS and a non-contrast-CT (NCCT), angio-CT (CTA) or perfusion-CT (CTP) within24 h from onset were included. Demographic, clinical, biological, radio-logical, and follow-up caracteristics were collected. Significant predictorsof MCTI use were fitted in a multivariate analysis. Patients undergoingCTA or CTA&CTP were compared with NCCT patients with regards tofavourable outcome (mRS ≤ 2) at 3 months, 12 months mortality, strokemechanism, short-term renal function, use of ancillary diagnostic tests,duration of hospitalization and 12 months stroke recurrence.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal, voltage-independent Na(+) channels that are transiently activated by extracellular acidification. They are involved in pain sensation, the expression of fear, and in neurodegeneration after ischemic stroke. Our study investigates the role of extracellular subunit interactions in ASIC1a function. We identified two regions involved in critical intersubunit interactions. First, formation of an engineered disulfide bond between the palm and thumb domains leads to partial channel closure. Second, linking Glu-235 of a finger loop to either one of two different residues of the knuckle of a neighboring subunit opens the channel at physiological pH or disrupts its activity. This suggests that one finger-knuckle disulfide bond (E235C/K393C) sets the channel in an open state, whereas the other (E235C/Y389C) switches the channel to a non-conducting state. Voltage-clamp fluorometry experiments indicate that both the finger loop and the knuckle move away from the β-ball residue Trp-233 during acidification and subsequent desensitization. Together, these observations reveal that ASIC1a opening is accompanied by a distance increase between adjacent thumb and palm domains as well as a movement of Glu-235 relative to the knuckle helix. Our study identifies subunit interactions in the extracellular loop and shows that dynamic changes of these interactions are critical for normal ASIC function.
Resumo:
BACKGROUND: Rivaroxaban has become an alternative to vitamin-K antagonists (VKA) for stroke prevention in non-valvular atrial fibrillation (AF) patients due to its favourable risk-benefit profile in the restrictive setting of a large randomized trial. However in the primary care setting, physician's motivation to begin with rivaroxaban, treatment satisfaction and the clinical event rate after the initiation of rivaroxaban are not known. METHODS: Prospective data collection by 115 primary care physicians in Switzerland on consecutive nonvalvular AF patients with newly established rivaroxaban anticoagulation with 3-month follow-up. RESULTS: We enrolled 537 patients (73±11years, 57% men) with mean CHADS2 and HAS-BLED-scores of 2.2±1.3 and 2.4±1.1, respectively: 301(56%) were switched from VKA to rivaroxaban (STR-group) and 236(44%) were VKA-naïve (VN-group). Absence of routine coagulation monitoring (68%) and fixed-dose once-daily treatment (58%) were the most frequent criteria for physicians to initiate rivaroxaban. In the STR-group, patient's satisfaction increased from 3.6±1.4 under VKA to 5.5±0.8 points (P<0.001), and overall physician satisfaction from 3.9±1.3 to 5.4±0.9 points (P<0.001) at 3months of rivaroxaban therapy (score from 1 to 6 with higher scores indicating greater satisfaction). In the VN-group, both patient's (5.4±0.9) and physician's satisfaction (5.5±0.7) at follow-up were comparable to the STR-group. During follow-up, 1(0.19%; 95%CI, 0.01-1.03%) ischemic stroke, 2(0.37%; 95%CI, 0.05-1.34%) major non-fatal bleeding and 11(2.05%; 95%CI, 1.03-3.64%) minor bleeding complications occurred. Rivaroxaban was stopped in 30(5.6%) patients, with side effects being the most frequent reason. CONCLUSION: Initiation of rivaroxaban for patients with nonvalvular AF by primary care physicians was associated with a low clinical event rate and with high overall patient's and physician's satisfaction.
Resumo:
In 2015, cerebral stimulation becomes increasingly established in the treatment of pharmacoresistant epilepsy. Efficacy of endovascular treatment has been demonstrated for acute ischemic stroke. Deep brain stimulation at low frequency improves dysphagia and freezing of gait in Parkinson patients. Bimagrumab seems to increase muscular volume and force in patients with inclusion body myositis. In cluster-type headache, a transcutaneous vagal nerve stimulator is efficient in stopping acute attacks and also reducing their frequency. Initial steps have been undertaken towards modulating memory by stimulation of the proximal fornix. Teriflunomide is the first oral immunomodulatory drug for which efficacy has been shown in preventing conversion from clinical isolated syndrome to multiple sclerosis.
Resumo:
Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen in the production of adenosine triphosphate in the oxidative phosphorylation system, the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. Mitochondrial disease in humans can present at any age, and practically in any organ system. Mitochondrial disease can be inherited in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion. One of the most common molecular etiologies of mitochondrial disease in population is the m.3243A>G mutation in the MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients with m.3243A>G has revealed various typical clinical features, such as stroke-like episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical characteristics of mitochondrial disease in population are not well known. This thesis consists of a series of studies, in which the prevalence and characteristics of mitochondrial disease in the adult population of Southwestern Finland were assessed. Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic stroke among young women. Large-scale mitochondrial DNA deletions and mutations of the POLG1 gene were the most common molecular etiologies of progressive external ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 years was associated with the m.3243A>G mutation. Moreover, among these young diabetic patients, mitochondrial haplogroup U was associated with maternal family history of diabetes. These studies demonstrate the usefulness of carefully planned molecular epidemiological investigations in the study of mitochondrial disorders.
Resumo:
Inflammatory markers have been associated with clinical outcome in patients with acute coronary syndrome (ACS). The present study evaluated the role of high-sensitivity C-reactive protein (CRP) measurements as a predictor of late cardiovascular outcomes after ACS. One hundred and ninety-nine ACS patients in a Coronary Care Unit from March to November 2002 were included and were reassessed clinically after ~3 years. Clinical variables and CRP levels were evaluated as predictors of major cardiovascular events (MACE, defined as the occurrence of cardiac death, ischemic stroke or myocardial infarction) and mortality. Statistical analyses included Cox multivariable analysis and survival curves (Kaplan-Meier). Of the 199 patients, 11 died within 1 month (5.5%). Of the 188 remaining patients, 22 died after a mean follow-up of 2.9 ± 0.5 years. Baseline CRP levels for patients with MACE (N = 57) were significantly higher than those of patients with no events (median = 0.67 mg/L; 25th-75th percentiles = 0.32 and 1.99 mg/L vs median = 0.45 mg/L; 25th-75th percentiles = 0.24 and 0.83 mg/L; P < 0.001). Patients with CRP levels >3 mg/L had a significantly lower survival than the other two groups (1-3 and <1 mg/L; P = 0.001, log-rank test). The odds ratio for MACE was 7.41 (2.03-27.09) for patients with CRP >3 mg/L compared with those with CRP <1 mg/L. For death by any cause, the hazard ratio was 4.58 (1.93-10.86). High CRP levels predicted worse long-term outcomes (MACE and death by any cause) in patients with ACS.
Resumo:
Bien que la plasticité ipsilesionnelle suite à un accident vasculo-cérébral (AVC) soit bien établie, la réorganisation du cortex contralésionnel et son effet sur la récupération fonctionnelle restent toujours non élucidés. Les études publiées présentent des points de vue contradictoires sur le rôle du cortex contralésionnel dans la récupération fonctionnelle. La taille de lésion pourrait être le facteur déterminant la réorganisation de ce dernier. Le but principal de cette étude fut donc d’évaluer l’effet des AVC de tailles différentes dans la région caudal forelimb area (CFA) du rat sur la réorganisation physiologique et la récupération comportementale de la main. Suite à une période de récupération spontanée pendant laquelle la performance motrice des deux membres antérieurs fut observée, les cartes motrices bilatérales du CFA et du rostral forelimb area (RFA) furent obtenues. Nous avons trouvé que le volume de lésion était en corrélation avec le niveau de récupération comportementale et l’étendue de la réorganisation des RFA bilatéraux. Aussi, les rats ayant de grandes lésions avaient des plus grandes représentations de la main dans le RFA de l’hémisphère ipsilésionnel et un déficit de fonctionnement plus persistant de la main parétique. Dans l’hémisphère contralésionnel nous avons trouvé que les rats avec des plus grandes représentations de la main dans le RFA avaient des lésions plus grandes et une récupération incomplète de la main parétique. Nos résultats confirment l’effet du volume de lésion sur la réorganisation du cortex contralésionnel et soulignent que le RFA est l’aire motrice la plus influencée dans le cortex contralésionnel.