924 resultados para Irrigation laws
Resumo:
The field experiments were conducted to compare the alternate partial root-zone irrigation (APRI) with and without black plastic mulch (BPM) with full root-zone irrigation (FRI) in furrow-irrigated okra (Abelmoschus esculentus L. Moench) at Bhubaneswar, India. APRI means that one of the two neighbouring furrows was alternately irrigated during consecutive watering. FRI was the conventional method where every furrow was irrigated during each watering. The used irrigation levels were 25% available soil moisture depletion (ASMD), 50% ASMD, and 75% ASMD. The plant growth and yield parameters were observed to be significantly (p < 0.05) higher with frequent irrigation (at 25% ASMD) under all irrigation strategies. However, APRI + BPM produced the maximum plant growth and yield using 22% and 56% less water over APRI without BPM and FRI, respectively. The highest pod yield (10025 kg ha^-1) was produced under APRI at 25% ASMD + BPM, which was statistically at par with the pod yield under APRI at 50% ASMD + BPM. Irrigation water use efficiency (IWUE), which indicates the pod yield per unit quantity of irrigation water, was estimated to be highest (12.3 kg m^-3) under APRI at 50% ASMD + BPM, followed by APRI at 25% ASMD + BPM. Moreover, the treatment APRI at 50% ASMD + BPM was found economically superior to other treatments, generating more net return (US $ 952 ha^-1) with higher benefit–cost ratio (1.70).
Resumo:
Evapotranspiration (ET) is a complex process in the hydrological cycle that influences the quantity of runoff and thus the irrigation water requirements. Numerous methods have been developed to estimate potential evapotranspiration (PET). Unfortunately, most of the reliable PET methods are parameter rich models and therefore, not feasible for application in data scarce regions. On the other hand, accuracy and reliability of simple PET models vary widely according to regional climate conditions. The objective of the present study was to evaluate the performance of three temperature-based and three radiation-based simple ET methods in estimating historical ET and projecting future ET at Muda Irrigation Scheme at Kedah, Malaysia. The performance was measured by comparing those methods with the parameter intensive Penman-Monteith Method. It was found that radiation based methods gave better performance compared to temperature-based methods in estimation of ET in the study area. Future ET simulated from projected climate data obtained through statistical downscaling technique also showed that radiation-based methods can project closer ET values to that projected by Penman-Monteith Method. It is expected that the study will guide in selecting suitable methods for estimating and projecting ET in accordance to availability of meteorological data.
Resumo:
Moringa oleifera is becoming increasingly popular as an industrial crop due to its multitude of useful attributes as water purifier, nutritional supplement and biofuel feedstock. Given its tolerance to sub-optimal growing conditions, most of the current and anticipated cultivation areas are in medium to low rainfall areas. This study aimed to assess the effect of various irrigation levels on floral initiation, flowering and fruit set. Three treatments namely, a 900 mm (900IT), 600 mm (600IT) and 300 mm (300IT) per annum irrigation treatment were administered through drip irrigation, simulating three total annual rainfall amounts. Individual inflorescences from each treatment were tagged during floral initiation and monitored throughout until fruit set. Flower bud initiation was highest at the 300IT and lowest at the 900IT for two consecutive growing seasons. Fruit set on the other hand, decreased with the decrease in irrigation treatment. Floral abortion, reduced pollen viability as well as moisture stress in the style were contributing factors to the reduction in fruiting/yield observed at the 300IT. Moderate water stress prior to floral initiation could stimulate flower initiation, however, this should be followed by sufficient irrigation to ensure good pollination, fruit set and yield.
Resumo:
For over 1,000 years, the Balinese have developed a unique system of democratic and sustainable water irrigation. It has shaped the cultural landscapes of Bali and enables local communities to manage the ecology of terraced rice fields at the scale of whole watersheds. The Subak system has made the Balinese the most productive rice growers in Indonesia and ensures a high level of food sovereignty for a dense population on the volcanic island. The Subak system provides a vibrant example of a diverse, ecologically sustainable, economically productive and democratic water management system that is also characterized by its nonreliance on fossil fuel derivatives or heavy machinery. In 2012, UNESCO has recognized five rice terraces and their water temples as World Heritage site and supports its conservation and protection. However, the fragile Subak system is threatened for its complexity and interconnectedness by new agricultural practices and increasing tourism on the island.
Resumo:
This paper seeks the determine the ways in which anomalous decisions derived from the particularization and constitutionalization of environmental law can arise given the general theory of administrative action. This is seen through the lens of a study and characterization of administrative decisions issued by the Regional Autonomous Corporation of Cundinamarca –CAR- within the superficial water concessions procedure. It also discusses the conceptual contents of these licenses.
Resumo:
Transitional provisions are defined as the set of regulations that rule juridical relationships on the occasion of a legislative change. Out of this context of law succession, their indiscriminate application can lead to serious inconsistencies. The analysis of a Spanish private law example is offered to illustrate this fact. It concerns the administrative authorization for the demolition of rented buildings in the cities. A regulation repealed more than fifteen years ago and however widespread utilised on ancient constructions that, after recent urban development, have acquired great economic value; something that in the end explains the current importance of such provisions. What is happening in Spain: denaturalization of the original figure due to a mixture of formalist interpretations and speculative market interests, is presented here to call the attention on the necessary limitation of transitional provisions’ effects.
Resumo:
Emitter spacings of 0.3 to 0.6 m are commonly used for subsurface drip irrigation (SDI) of corn on the deep, silt loam soils of the U.S. Great Plains. Subsurface drip irrigation emitter spacings of 0.3, 0.6, 0.9 and 1.2 m were examined for the resulting differences in soil water redistribution, corn grain yield, yield components, seasonal water use, and water productivity in a 4‐year field study (2005 through 2008) at the Kansas State University Northwest Research‐Extension Center, Colby, Kansas. The results indicate that there is increased preferential water movement along the dripline (parallel) as compared to perpendicular to the dripline and that this phenomenon partially compensates for wider emitter spacings in terms of soil water redistribution. Corn yield and water productivity (WP) were not significantly affected by the emitter spacing with application of a full irrigation regime
Resumo:
In the ornamental plant production region of Girona (Spain), which is one of the largest of its kind in southern Europe, most of the surface is irrigated using wide blocked-end furrows. The objectives of this paper were: (1) to evaluate the irrigation scheduling methods used by ornamental plant producers; (2) to analyse different scenarios in order to assess how they affect irrigation performance; (3) to evaluate the risk of deep percolation; and (4) to calculate gross water productivity. A two-year study in a representative commercial field, planted with Prunus cerasifera ‘Nigra’, was carried out. The irrigation dose applied by the farmers was slightly smaller than the required water dose estimated by the use of two different methods: the first based on soil water content, and the second based on evapotranspiration. Distribution uniformity and application efficiency were high, with mean values above 87%. Soil water content measurements revealed that even at the end of the furrow, where the infiltrated water depth was greatest, more than 90% of the infiltrated water was retained in the shallowest 40 cm of the soil; accordingly, the risk of water loss due to deep percolation was minimal. Gross water productivity for ornamental tree production was € 11.70 m–3, approximately 20 times higher than that obtained with maize in the same region