887 resultados para Iron purification
Resumo:
There are currently many devices and techniques to quantify trace elements (TEs) in various matrices, but their efficacy is dependent on the digestion methods (DMs) employed in the opening of such matrices which, although "organic", present inorganic components which are difficult to solubilize. This study was carried out to evaluate the recovery of Fe, Zn, Cr, Ni, Cd and Pb contents in samples of composts and cattle, horse, chicken, quail, and swine manures, as well as in sewage sludges and peat. The DMs employed were acid digestion in microwaves with HNO3 (EPA 3051A); nitric-perchloric digestion with HNO3 + HClO4 in a digestion block (NP); dry ashing in a muffle furnace and solubilization of residual ash in nitric acid (MDA); digestion by using aqua regia solution (HCl:HNO3) in the digestion block (AR); and acid digestion with HCl and HNO3 + H2O2 (EPA 3050). The dry ashing method led to the greatest recovery of Cd in organic residues, but the EPA 3050 protocol can be an alternative method for the same purpose. The dry ashing should not be employed to determine the concentration of Cr, Fe, Ni, Pb and Zn in the residues. Higher Cr and Fe contents are recovered when NP and EPA 3050 are employed in the opening of organic matrices. For most of the residues analyzed, AR is the most effective method for recovering Ni. Microwave-assisted digestion methods (EPA3051 and 3050) led to the highest recovery of Pb. The choice of the DM that provides maximum recovery of Zn depends on the organic residue and trace element analyzed.
Resumo:
Establishment of the water layer in an irrigated rice crop leads to consumption of free oxygen in the soil which enters in a chemical reduction process mediated by anaerobic microorganisms, changing the crop environment. To maintain optimal growth in an environment without O2, rice plants develop pore spaces (aerenchyma) that allow O2 transport from air to the roots. Carrying capacity is determined by the rice genome and it may vary among cultivars. Plants that have higher capacity for formation of aerenchyma should theoretically carry more O2 to the roots. However, part of the O2 that reaches the roots is lost due to permeability of the roots and the O2 gradient created between the soil and roots. The O2 that is lost to the outside medium can react with chemically reduced elements present in the soil; one of them is iron, which reacts with oxygen and forms an iron plaque on the outer root surface. Therefore, evaluation of the iron plaque and of the formation of pore spaces on the root can serve as a parameter to differentiate rice cultivars in regard to the volume of O2 transported via aerenchyma. An experiment was thus carried out in a greenhouse with the aim of comparing aerenchyma and iron plaque formation in 13 rice cultivars grown in flooded soils to their formation under growing conditions similar to a normal field, without free oxygen. The results indicated significant differences in the volume of pore spaces in the roots among cultivars and along the root segment in each cultivar, indicating that under flooded conditions the genetic potential of the plant is crucial in induction of cell death and formation of aerenchyma in response to lack of O2. In addition, the amount of Fe accumulated on the root surface was different among genotypes and along the roots. Thus, we concluded that the rice genotypes exhibit different responses for aerenchyma formation, oxygen release by the roots and iron plaque formation, and that there is a direct relationship between porosity and the amount of iron oxidized on the root surface.
Resumo:
Improvements in working conditions, sustainable production, and competitiveness have led to substantial changes in sugarcane harvesting systems. Such changes have altered a number of soil properties, including iron oxides and organic matter, as well as some chemical properties, such as the maximum P adsorption capacity of the soil. The aim of this study was to characterize the relationship between iron oxides and the quality of organic matter in sugarcane harvesting systems. For that purpose, two 1 ha plots in mechanically and manually harvested fields were used to obtain soil samples from the 0.00-0.25 m soil layer at 126 different points. The mineralogical, chemical, and physical results were subjected to descriptive statistical analyses, such as the mean comparison test, as well as to multivariate statistical and principal component analyses. Multivariate tests allowed soil properties to be classified in two different groups according to the harvesting method: manual harvest with the burning of residual cane, and mechanical harvest without burning. The mechanical harvesting system was found to enhance pedoenvironmental conditions, leading to changes in the crystallinity of iron oxides, an increase in the humification of organic matter, and a relative decrease in phosphorus adsorption in this area compared to the manual harvesting system.
Resumo:
Alpha1-Acid glycoprotein (AAG) or orosomucoid was purified to homogeneity from human plasma by a separate two-step method using chromatography on immobilized Cibacron Blue F3G-A to cross-linked agarose and chromatography on hydroxyapatite. The conditions for the pre-purification of AAG by chromatography on immobilized Cibacron Blue F3G-A were first optimized using different buffer systems with different pH values. The overall yield of the combined techniques was 80% and ca. 12 mg of AAG were purified from an initial total amount of ca. 15 mg in a ca. 40 ml sample of human plasma. This method was applied to the purification of AAG samples corresponding to the three main phenotypes of the protein (FI*S/A, F1/A and S/A), from individual human plasma previously phenotyped for AAG. A study by isoelectric focusing with carrier ampholytes showed that the microheterogeneity of the purified F1*S/A, F1/A and S/A AAG samples was similar to that of AAG in the corresponding plasma, thus suggesting that no apparent desialylation of the glycoprotein occurred during the purification steps. This method was also applied to the purification of AAG samples corresponding to rare phenotypes of the protein (F1/A*AD, S/A*X0 and F1/A*C1) and the interactions of these variants with immobilized copper(II) ions were then studied at pH 7, by chromatography on an iminodiacetate Sepharose-Cu(II) gel. It was found that the different variants encoded by the first of the two genes coding for AAG in humans (i.e. the F1 and S variants) interacted non-specifically with the immobilized ligand, whereas those encoded by the second gene of AAG (i.e. the A, AD, X0 and C1 variants) strongly bound to immobilized Cu(II) ions. These results suggested that chromatography on an immobilized affinity Cu(II) adsorbent could be helpful to distinguish between the respective products of the two highly polymorphic genes which code for human AAG.
Resumo:
We report the results of magnetization and 57Fe Mössbauer spectroscopy measurements performed in the temperature range 5-300 K on composites containing iron¿oxide nanoparticles encased in polystyrene type resins. After carrying out a suitable field treatment in order to decouple the particles from the matrix, a fraction of the particles freely rotate in response to an applied magnetic field
Resumo:
The Rietveld profile‐analysis method is used to investigate the x‐ray diffraction pattern of lithiated Fe3O4. It is shown that, after exposure to air, pure magnetite coexists with a lithium‐inserted LixFe3O4 phase. The Mössbauer spectra at 300 and 4.2 K have been used to estimate the lithium content of the sample, the pure magnetite concentration, and the iron distribution over the available 16c and 16d sites of the spinel structure. Magnetization measurements from 4.2 to 120 K with an external magnetic field up to 150 kOe have been used to obtain the saturation magnetic moment, the magnetic anisotropy constants, and the susceptibility. It is concluded that a noncollinear spin structure should be present in Li0.5Fe3O4. These results indicate that there is no room‐temperature extrusion of iron even for x→2.0, but that on exposure to air LixFe3O4 samples with x>0.5 are oxidized at room temperature by delithiation.
Resumo:
The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.
Resumo:
Capital intensive industries in specialized niches of production have constituted solid ground for family firms in Spain , as evidenced by the experience of the iron and steel wire industries between 1870 and 2000. The embeddedness of these firms in their local and regional environments have allowed the creation of networks that, together with favourable institutional conditions, significantly explain the dominance of family entrepreneurship in iron and steel wire manufacturing in Spain, until the end of the 20 th century. Dominance of family firms at the regional level has not been not an obstacle for innovation in wire manufacturing in Spain, which has taken place even when institutional conditions blocked innovation and traditional networking. Therefore, economic theories about the difficulties dynastic family firms may have to perform appropriately in science-based industries must be questioned
Resumo:
QUESTIONS UNDER STUDY: Iron deficiency with or without anaemia is the most common deficiency in the world. Its prevalence is higher in developing countries and in low socioeconomic populations. We aimed at determining and comparing the prevalence of iron deficiency in an immigrant and non-immigrant population. METHODS: Every child scheduled for a routine check-up at 12 months of age was allowed to participate in the study. Haemoglobin, ferritin, anthropometric data, familial and nutritional status were measured. RESULTS: 586 infants were eligible and 463 were included in the study as they had assessment data at 12 months. Children were divided into two groups: immigrants' children and non-immigrants' children. The global prevalence of iron deficiency was 5.7% at 12 months. A significant difference for iron deficiency was noticed between the groups at 12 months (p = 0.01). Among risk factors, immigration (odds ratio 2.91; 95% CI 1.05-8.04) and unemployment (odds ratio 6.08; 95% CI 1.18-31.30) had the higher odds in the multivariable analysis. CONCLUSION: The prevalence of iron deficiency in the immigrant population is higher than in non-immigrants. Immigration and the category of employment are risk factors for iron deficiency, as starting baby cereals before 9 months is a protective factor. Good socioeconomic conditions in Switzerland, the quality of food for pregnant women and young infants may be the explanation. A study up to five years of age is necessary before drawing general conclusions on infancy.
Resumo:
Aim: Ultrasmall superparamagnetic iron oxide nanoparticles (USPIO-NPs) are under development for imaging and drug delivery; however, their interaction with human blood-brain barrier models is not known. Materials & Methods: The uptake, reactive oxygen species production and transport of USPIO-NPs across human brain-derived endothelial cells as models of the blood-brain tumor barrier were evaluated for either uncoated, oleic acid-coated or polyvinylamine-coated USPIO-NPs. Results: Reactive oxygen species production was observed for oleic acid-coated and polyvinylamine-coated USPIO-NPs. The uptake and intracellular localization of the iron oxide core of the USPIO-NPs was confirmed by transmission electron microscopy. However, while the uptake of these USPIO-NPs by cells was observed, they were neither released by nor transported across these cells even in the presence of an external dynamic magnetic field. Conclusion: USPIO-NP-loaded filopodia were observed to invade the polyester membrane, suggesting that they can be transported by migrating angiogenic brain-derived endothelial cells.
Resumo:
Comprend : La Nativité : [drame historique en 3 tableaux] - La Purification : [drame historique en 1 acte] - La fuite en Égypte : [drame historique en 3 tableaux]
Resumo:
The presynaptic plasma membrane (PSPM) of cholinergic nerve terminals was purified from Torpedo electric organ using a large-scale procedure. Up to 500 g of frozen electric organ were fractioned in a single run, leading to the isolation of greater than 100 mg of PSPM proteins. The purity of the fraction is similar to that of the synaptosomal plasma membrane obtained after subfractionation of Torpedo synaptosomes as judged by its membrane-bound acetylcholinesterase activity, the number of Glycera convoluta neurotoxin binding sites, and the binding of two monoclonal antibodies directed against PSPM. The specificity of these antibodies for the PSPM is demonstrated by immunofluorescence microscopy.
Resumo:
Should we treat iron deficiency without anemia? The simple fact that the question can be formulated already leads to controversies. During the past years, the development of a new formulation of intravenous iron has helped fuel the controversy. What is the situation in 2012? This article gives a practical point of view on the actual situation and provides indications on the use of new intravenous medications.