958 resultados para Iron foundries Production control Data processing
Resumo:
Fujaba is an Open Source UML CASE tool project started at the software engineering group of Paderborn University in 1997. In 2002 Fujaba has been redesigned and became the Fujaba Tool Suite with a plug-in architecture allowing developers to add functionality easily while retaining full control over their contributions. Multiple Application Domains Fujaba followed the model-driven development philosophy right from its beginning in 1997. At the early days, Fujaba had a special focus on code generation from UML diagrams resulting in a visual programming language with a special emphasis on object structure manipulating rules. Today, at least six rather independent tool versions are under development in Paderborn, Kassel, and Darmstadt for supporting (1) reengineering, (2) embedded real-time systems, (3) education, (4) specification of distributed control systems, (5) integration with the ECLIPSE platform, and (6) MOF-based integration of system (re-) engineering tools. International Community According to our knowledge, quite a number of research groups have also chosen Fujaba as a platform for UML and MDA related research activities. In addition, quite a number of Fujaba users send requests for more functionality and extensions. Therefore, the 8th International Fujaba Days aimed at bringing together Fujaba develop- ers and Fujaba users from all over the world to present their ideas and projects and to discuss them with each other and with the Fujaba core development team.
Resumo:
Self-adaptive software provides a profound solution for adapting applications to changing contexts in dynamic and heterogeneous environments. Having emerged from Autonomic Computing, it incorporates fully autonomous decision making based on predefined structural and behavioural models. The most common approach for architectural runtime adaptation is the MAPE-K adaptation loop implementing an external adaptation manager without manual user control. However, it has turned out that adaptation behaviour lacks acceptance if it does not correspond to a user’s expectations – particularly for Ubiquitous Computing scenarios with user interaction. Adaptations can be irritating and distracting if they are not appropriate for a certain situation. In general, uncertainty during development and at run-time causes problems with users being outside the adaptation loop. In a literature study, we analyse publications about self-adaptive software research. The results show a discrepancy between the motivated application domains, the maturity of examples, and the quality of evaluations on the one hand and the provided solutions on the other hand. Only few publications analysed the impact of their work on the user, but many employ user-oriented examples for motivation and demonstration. To incorporate the user within the adaptation loop and to deal with uncertainty, our proposed solutions enable user participation for interactive selfadaptive software while at the same time maintaining the benefits of intelligent autonomous behaviour. We define three dimensions of user participation, namely temporal, behavioural, and structural user participation. This dissertation contributes solutions for user participation in the temporal and behavioural dimension. The temporal dimension addresses the moment of adaptation which is classically determined by the self-adaptive system. We provide mechanisms allowing users to influence or to define the moment of adaptation. With our solution, users can have full control over the moment of adaptation or the self-adaptive software considers the user’s situation more appropriately. The behavioural dimension addresses the actual adaptation logic and the resulting run-time behaviour. Application behaviour is established during development and does not necessarily match the run-time expectations. Our contributions are three distinct solutions which allow users to make changes to the application’s runtime behaviour: dynamic utility functions, fuzzy-based reasoning, and learning-based reasoning. The foundation of our work is a notification and feedback solution that improves intelligibility and controllability of self-adaptive applications by implementing a bi-directional communication between self-adaptive software and the user. The different mechanisms from the temporal and behavioural participation dimension require the notification and feedback solution to inform users on adaptation actions and to provide a mechanism to influence adaptations. Case studies show the feasibility of the developed solutions. Moreover, an extensive user study with 62 participants was conducted to evaluate the impact of notifications before and after adaptations. Although the study revealed that there is no preference for a particular notification design, participants clearly appreciated intelligibility and controllability over autonomous adaptations.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
Presentation given at the Al-Azhar Engineering First Conference, AEC’89, Dec. 9-12 1989, Cairo, Egypt. The paper presented at AEC'89 suggests an infinite storage scheme divided into one volume which is online and an arbitrary number of off-line volumes arranged into a linear chain which hold records which haven't been accessed recently. The online volume holds the records in sorted order (e.g. as a B-tree) and contains shortest prefixes of keys of records already pushed offline. As new records enter, older ones are retired to the first volume which is going offline next. Statistical arguments are given for the rate at which an off-line volume needs to be fetched to reload a record which had been retired before. The rate depends on the distribution of access probabilities as a function of time. Applications are medical records, production records or other data which need to be kept for a long time for legal reasons.
Resumo:
Eine wesentliche Funktionalität bei der Verwendung semantischer Technologien besteht in dem als Reasoning bezeichneten Prozess des Ableitens von impliziten Fakten aus einer explizit gegebenen Wissensbasis. Der Vorgang des Reasonings stellt vor dem Hintergrund der stetig wachsenden Menge an (semantischen) Informationen zunehmend eine Herausforderung in Bezug auf die notwendigen Ressourcen sowie der Ausführungsgeschwindigkeit dar. Um diesen Herausforderungen zu begegnen, adressiert die vorliegende Arbeit das Reasoning durch eine massive Parallelisierung der zugrunde liegenden Algorithmen und der Einführung von Konzepten für eine ressourceneffiziente Ausführung. Diese Ziele werden unter Berücksichtigung der Verwendung eines regelbasierten Systems verfolgt, dass im Gegensatz zur Implementierung einer festen Semantik die Definition der anzuwendenden Ableitungsregeln während der Laufzeit erlaubt und so eine größere Flexibilität bei der Nutzung des Systems bietet. Ausgehend von einer Betrachtung der Grundlagen des Reasonings und den verwandten Arbeiten aus den Bereichen des parallelen sowie des regelbasierten Reasonings werden zunächst die Funktionsweise von Production Systems sowie die dazu bereits existierenden Ansätze für die Optimierung und im Speziellen der Parallelisierung betrachtet. Production Systems beschreiben die grundlegende Funktionalität der regelbasierten Verarbeitung und sind somit auch die Ausgangsbasis für den RETE-Algorithmus, der zur Erreichung der Zielsetzung der vorliegenden Arbeit parallelisiert und für die Ausführung auf Grafikprozessoren (GPUs) vorbereitet wird. Im Gegensatz zu bestehenden Ansätzen unterscheidet sich die Parallelisierung insbesondere durch die gewählte Granularität, die nicht durch die anzuwendenden Regeln, sondern von den Eingabedaten bestimmt wird und sich damit an der Zielarchitektur orientiert. Aufbauend auf dem Konzept der parallelen Ausführung des RETE-Algorithmus werden Methoden der Partitionierung und Verteilung der Arbeitslast eingeführt, die zusammen mit Konzepten der Datenkomprimierung sowie der Verteilung von Daten zwischen Haupt- und Festplattenspeicher ein Reasoning über Datensätze mit mehreren Milliarden Fakten auf einzelnen Rechnern erlauben. Eine Evaluation der eingeführten Konzepte durch eine prototypische Implementierung zeigt für die adressierten leichtgewichtigen Ontologiesprachen einerseits die Möglichkeit des Reasonings über eine Milliarde Fakten auf einem Laptop, was durch die Reduzierung des Speicherbedarfs um rund 90% ermöglicht wird. Andererseits kann der dabei erzielte Durchsatz mit aktuellen State of the Art Reasonern verglichen werden, die eine Vielzahl an Rechnern in einem Cluster verwenden.
Resumo:
We develop an extension to the tactical planning model (TPM) for a job shop by the third author. The TPM is a discrete-time model in which all transitions occur at the start of each time period. The time period must be defined appropriately in order for the model to be meaningful. Each period must be short enough so that a job is unlikely to travel through more than one station in one period. At the same time, the time period needs to be long enough to justify the assumptions of continuous workflow and Markovian job movements. We build an extension to the TPM that overcomes this restriction of period sizing by permitting production control over shorter time intervals. We achieve this by deriving a continuous-time linear control rule for a single station. We then determine the first two moments of the production level and queue length for the workstation.
Resumo:
El projecte tracte d' implementar una solució de Business Intelligence sota la plataforma Microsoft.Aquest projecte va destinat al Departament de Comptabilitat de l' Ajuntament de Cambrils, i està relacionat amb la funció del control de les despeses i els ingressos
Resumo:
Supervisory systems evolution makes the obtaining of significant information from processes more important in the way that the supervision systems' particular tasks are simplified. So, having signal treatment tools capable of obtaining elaborate information from the process data is important. In this paper, a tool that obtains qualitative data about the trends and oscillation of signals is presented. An application of this tool is presented as well. In this case, the tool, implemented in a computer-aided control systems design (CACSD) environment, is used in order to give to an expert system for fault detection in a laboratory plant
Resumo:
Resumen: Introducción: El ausentismo laboral por causa médica es un problema por la afectación que genera en el trabajador y en la empresa. Objetivo: Caracterizar el ausentismo laboral por causas médicas de una empresa de alimentos de Bogotá. Materiales y métodos: Estudio de corte transversal con datos secundarios de registros de incapacidades de los años 2013 y 2014. El procesamiento de la información se realizó con el programa SPSS, se obtuvieron medidas de tendencia central y de dispersión. Se determinó el número y la duración de incapacidades, la duración media de estas, el sistema afectado, se realizó el análisis de frecuencia por centro de costo y género. Resultados: Se registraron un total de 575 incapacidades, 387 fueron por enfermedad de origen común y 188 por accidentes de trabajo. Se perdieron 3.326 días por ausentismo, de los cuales en 45,09% se presentó en 2013 y el 54,91% restante en 2014, de estos 1985 se generaron en eventos de origen común y 1341 por accidentes de trabajo. La principal causa de incapacidades por enfermedades de origen común fueron patologías asociadas al sistema músculo esquelético, y para las originadas en accidentes de trabajo fueron las lesiones en manos. Conclusiones: para el año 2014 los accidentes de trabajo disminuyeron con respecto al año 2013 y el sistema más afectado respecto a enfermedad común fue el osteomuscular. Es conveniente que se implemente un sistema o programa de vigilancia y análisis en puestos de trabajo para identificar los factores de riesgo asociados y minimizar los riesgos.
Resumo:
Es va instal.lar un analitzador CM4000 a la Facultat de Ciències per tal de poder enregistrar en temps real les incidències en la xarxa elèctrica que s'estaven produint (caigudes de tensió i problemes amb els harmònics). El projecte vol monotoritzar la qualitat dels registres d'aquest analitzador que queden enregistrats a la base de dades Power Server. A partir d'aquestes dades es realitza un estudi sobre la freqüència de les incidències, buscant el patró dels dies i hores en què les incidències són màximes
Resumo:
Estudi de la implantació del control automàtic en la producció d'una indústria farmacèutica, concretament en sis línies de màquines. A part de portar un control es pretén millorar la producció i a la vegada detectar qualsevol error o anomalia que es produeixi en aquestes màquines
Resumo:
Una de las actuaciones posibles para la gestión de los residuos sólidos urbanos es la valorización energética, es decir la incineración con recuperación de energía. Sin embargo es muy importante controlar adecuadamente el proceso de incineración para evitar en lo posible la liberación de sustancias contaminantes a la atmósfera que puedan ocasionar problemas de contaminación industrial.Conseguir que tanto el proceso de incineración como el tratamiento de los gases se realice en condiciones óptimas presupone tener un buen conocimiento de las dependencias entre las variables de proceso. Se precisan métodos adecuados de medida de las variables más importantes y tratar los valores medidos con modelos adecuados para transformarlos en magnitudes de mando. Un modelo clásico para el control parece poco prometedor en este caso debido a la complejidad de los procesos, la falta de descripción cuantitativa y la necesidad de hacer los cálculos en tiempo real. Esto sólo se puede conseguir con la ayuda de las modernas técnicas de proceso de datos y métodos informáticos, tales como el empleo de técnicas de simulación, modelos matemáticos, sistemas basados en el conocimiento e interfases inteligentes. En [Ono, 1989] se describe un sistema de control basado en la lógica difusa aplicado al campo de la incineración de residuos urbanos. En el centro de investigación FZK de Karslruhe se están desarrollando aplicaciones que combinan la lógica difusa con las redes neuronales [Jaeschke, Keller, 1994] para el control de la planta piloto de incineración de residuos TAMARA. En esta tesis se plantea la aplicación de un método de adquisición de conocimiento para el control de sistemas complejos inspirado en el comportamiento humano. Cuando nos encontramos ante una situación desconocida al principio no sabemos como actuar, salvo por la extrapolación de experiencias anteriores que puedan ser útiles. Aplicando procedimientos de prueba y error, refuerzo de hipótesis, etc., vamos adquiriendo y refinando el conocimiento, y elaborando un modelo mental. Podemos diseñar un método análogo, que pueda ser implementado en un sistema informático, mediante el empleo de técnicas de Inteligencia Artificial.Así, en un proceso complejo muchas veces disponemos de un conjunto de datos del proceso que a priori no nos dan información suficientemente estructurada para que nos sea útil. Para la adquisición de conocimiento pasamos por una serie de etapas: - Hacemos una primera selección de cuales son las variables que nos interesa conocer. - Estado del sistema. En primer lugar podemos empezar por aplicar técnicas de clasificación (aprendizaje no supervisado) para agrupar los datos y obtener una representación del estado de la planta. Es posible establecer una clasificación, pero normalmente casi todos los datos están en una sola clase, que corresponde a la operación normal. Hecho esto y para refinar el conocimiento utilizamos métodos estadísticos clásicos para buscar correlaciones entre variables (análisis de componentes principales) y así poder simplificar y reducir la lista de variables. - Análisis de las señales. Para analizar y clasificar las señales (por ejemplo la temperatura del horno) es posible utilizar métodos capaces de describir mejor el comportamiento no lineal del sistema, como las redes neuronales. Otro paso más consiste en establecer relaciones causales entre las variables. Para ello nos sirven de ayuda los modelos analíticos - Como resultado final del proceso se pasa al diseño del sistema basado en el conocimiento. El objetivo principal es aplicar el método al caso concreto del control de una planta de tratamiento de residuos sólidos urbanos por valorización energética. En primer lugar, en el capítulo 2 Los residuos sólidos urbanos, se trata el problema global de la gestión de los residuos, dando una visión general de las diferentes alternativas existentes, y de la situación nacional e internacional en la actualidad. Se analiza con mayor detalle la problemática de la incineración de los residuos, poniendo especial interés en aquellas características de los residuos que tienen mayor importancia de cara al proceso de combustión.En el capítulo 3, Descripción del proceso, se hace una descripción general del proceso de incineración y de los distintos elementos de una planta incineradora: desde la recepción y almacenamiento de los residuos, pasando por los distintos tipos de hornos y las exigencias de los códigos de buena práctica de combustión, el sistema de aire de combustión y el sistema de humos. Se presentan también los distintos sistemas de depuración de los gases de combustión, y finalmente el sistema de evacuación de cenizas y escorias.El capítulo 4, La planta de tratamiento de residuos sólidos urbanos de Girona, describe los principales sistemas de la planta incineradora de Girona: la alimentación de residuos, el tipo de horno, el sistema de recuperación de energía, y el sistema de depuración de los gases de combustión Se describe también el sistema de control, la operación, los datos de funcionamiento de la planta, la instrumentación y las variables que son de interés para el control del proceso de combustión.En el capítulo 5, Técnicas utilizadas, se proporciona una visión global de los sistemas basados en el conocimiento y de los sistemas expertos. Se explican las diferentes técnicas utilizadas: redes neuronales, sistemas de clasificación, modelos cualitativos, y sistemas expertos, ilustradas con algunos ejemplos de aplicación.Con respecto a los sistemas basados en el conocimiento se analizan en primer lugar las condiciones para su aplicabilidad, y las formas de representación del conocimiento. A continuación se describen las distintas formas de razonamiento: redes neuronales, sistemas expertos y lógica difusa, y se realiza una comparación entre ellas. Se presenta una aplicación de las redes neuronales al análisis de series temporales de temperatura.Se trata también la problemática del análisis de los datos de operación mediante técnicas estadísticas y el empleo de técnicas de clasificación. Otro apartado está dedicado a los distintos tipos de modelos, incluyendo una discusión de los modelos cualitativos.Se describe el sistema de diseño asistido por ordenador para el diseño de sistemas de supervisión CASSD que se utiliza en esta tesis, y las herramientas de análisis para obtener información cualitativa del comportamiento del proceso: Abstractores y ALCMEN. Se incluye un ejemplo de aplicación de estas técnicas para hallar las relaciones entre la temperatura y las acciones del operador. Finalmente se analizan las principales características de los sistemas expertos en general, y del sistema experto CEES 2.0 que también forma parte del sistema CASSD que se ha utilizado.El capítulo 6, Resultados, muestra los resultados obtenidos mediante la aplicación de las diferentes técnicas, redes neuronales, clasificación, el desarrollo de la modelización del proceso de combustión, y la generación de reglas. Dentro del apartado de análisis de datos se emplea una red neuronal para la clasificación de una señal de temperatura. También se describe la utilización del método LINNEO+ para la clasificación de los estados de operación de la planta.En el apartado dedicado a la modelización se desarrolla un modelo de combustión que sirve de base para analizar el comportamiento del horno en régimen estacionario y dinámico. Se define un parámetro, la superficie de llama, relacionado con la extensión del fuego en la parrilla. Mediante un modelo linealizado se analiza la respuesta dinámica del proceso de incineración. Luego se pasa a la definición de relaciones cualitativas entre las variables que se utilizan en la elaboración de un modelo cualitativo. A continuación se desarrolla un nuevo modelo cualitativo, tomando como base el modelo dinámico analítico.Finalmente se aborda el desarrollo de la base de conocimiento del sistema experto, mediante la generación de reglas En el capítulo 7, Sistema de control de una planta incineradora, se analizan los objetivos de un sistema de control de una planta incineradora, su diseño e implementación. Se describen los objetivos básicos del sistema de control de la combustión, su configuración y la implementación en Matlab/Simulink utilizando las distintas herramientas que se han desarrollado en el capítulo anterior.Por último para mostrar como pueden aplicarse los distintos métodos desarrollados en esta tesis se construye un sistema experto para mantener constante la temperatura del horno actuando sobre la alimentación de residuos.Finalmente en el capítulo Conclusiones, se presentan las conclusiones y resultados de esta tesis.
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
O processo de gestão de risco consiste, no estudo estruturado de todos os aspetos inerentes ao trabalho e é composto pela análise de risco, avaliação de risco e controlo de risco. Na análise de risco, é efetuada a identificação de todos os perigos presentes e a estimação da probabilidade e da gravidade, de acordo com o método de avaliação de risco escolhido. Este estudo centra-se na primeira etapa do processo de avaliação de risco, mais especificamente na análise de risco e nos marcadores de informação necessários para se efetuar a estimação de risco na industria extrativa a céu aberto (atividade de risco elevado). Considerando que o nível de risco obtido, depende fundamentalmente da estimação da probabilidade e da gravidade, ajustada a cada situação de risco, procurou-se identificar os marcadores e compreender a sua influência nos resultados da avaliação de risco (magnitude). O plano de trabalhos de investigação foi sustentado por uma metodologia qualitativa de recolha, registo e análise dos dados. Neste estudo, a recolha de informação foi feita com recurso às seguintes técnicas de investigação: - Observação estruturada e planeada do desmonte da rocha com recurso a explosivos; - Entrevista individual de formadores e gestores de risco (amostragem de casos típicos); Na análise e discussão qualitativa dos dados das entrevistas recorreu-se às seguintes técnicas: - Triangulação de analistas e tratamento de dados cognitiva (técnicas complementares); - Aposição dos marcadores de informação, versus, três métodos de avaliação de risco validados. Os resultados obtidos apontam no sentido das hipóteses de investigação formuladas, ou seja, o tipo de risco influi da seleção da informação e, existem diferenças significativas no nível de risco obtido, quando na estimação da probabilidade e da gravidade são utilizados marcadores de informação distintos.
Resumo:
The motion of a car is described using a stochastic model in which the driving processes are the steering angle and the tangential acceleration. The model incorporates exactly the kinematic constraint that the wheels do not slip sideways. Two filters based on this model have been implemented, namely the standard EKF, and a new filter (the CUF) in which the expectation and the covariance of the system state are propagated accurately. Experiments show that i) the CUF is better than the EKF at predicting future positions of the car; and ii) the filter outputs can be used to control the measurement process, leading to improved ability to recover from errors in predictive tracking.