999 resultados para Intestino Delgado
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
O Brasil possui a maior biodiversidade do planeta, apresentando ecossistemas importantes como a Floresta Amazônica, Mata Atlântica, Cerrado, Pantanal e a Caatinga. A Região Amazônica por suas características geográficas e sócio-econômicas, propicia a ocorrência de várias doenças infecciosas e parasitárias emergentes e re-emergentes. O objetivo deste trabalho é realizar estudo taxonômico dos helmintos encontrados no sistema digestivo de marsupiais da espécie Philander opossum, oriundos da Floresta Nacional de Tapirapé-Aquiri – Serra dos Carajás. Este animal silvestre da ordem Didelphimorfia e Família Didelphidae apresenta hábitos noturnos, alimenta-se de frutos pequenos; importante para dispersão das sementes e é comum em ambientes urbanos. O P. opossum é um reservatório silvestre de protozoários (Trypanosoma cruzi e Nuttallia brasiliensis) e vários helmintos. Análises preliminares do intestino deste hospedeiro, mostraram numerosos nematódeos, que foram analisados por microscopia de luz e microscopia eletrônica de varredura para identificação de espécies. A colheita dos nematódeos foi realizada em PBS (Phosphate Buffer Saline) e os parasitos foram transferidos para solução fixadora de AFA (Álcool 70%, Formol P.A. e Ácido acético P.A.), posteriormente estes helmintos foram processados por desidratação em série etanólica crescente, clarificação com Lactofenol de Aman, montagem entre lâmina e lamínula. Realização de análises, desenhos e fotografias foram feitas no microscópio Olympus BX 41 com câmara clara e também processados para microscopia Eletrônica de Varredura (MEV). Os resultados indicaram a presença de parasitos do filo nematoda de intestino grosso de P. opossum de Carajás-PA, pertencentes às famílias Kathlaniidae e Aspidoderidae, sendo que pelos dados morfológicos estes parasitos são espécies novas dos gêneros Cruzia e Aspidodera, respectivamente.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Currently the use of pesticides in agriculture is widespread due to their high effectiveness in combating pests, weeds and diseases leading to better productivity and economical performance in agricultural area. The use of pesticides affects the whole world and their use is often performed in an improper and indiscriminate way and for long periods. Several studies have been carried out in order to verify the presence of pesticides in nature, with worrying results. The presence of higher levels of pesticides and their degradation products in soil and surface and groundwater have indicated increasing contamination. Among the most widely used pesticides, herbicides are present and among these trifluralin has occupied an important place due to its widespread use; it is an herbicide originated from benzene derivatives belonging to dinitroanilines family; it is classified as belonging to group C, being possibly carcinogenic for humans, present a high persistence in soil as a result of its low mobility and therefore may affect local edaphic fauna. Diplopods belong to a group of invertebrates considered important in the soil dynamics; due to their close contact with it, these animals can be used as bioindicators of substrates toxicity. This study aimed to expose diplopod specimens of the species R. padbergi to different concentrations of trifluralin and therefore it was mounted five bioassays containing soil from the site where animals were collected (control group) and the same soil mixed to different concentrations of trifluralin herbicide (concentration recommended for agriculture use, that is, the dose recommended by the producer 0.0534g/m2, double, haft and quarter of this dose), animals were exposed for 7 and 90 days. During the entire period of exposure (90 days), it was observed that the number of animals in the control bioassay remained stable until the 5th week, presenting only... (Complete abstract click electronic access below)
Resumo:
Não disponível
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Bifidobacteria constitute up to 3% of the total microbiota and represent one of the most important healthpromoting bacterial groups of the human intestinal microflora. The presence of Bifidobacterium in the human gastrointestinal tract has been directly related to several health-promoting activities; however, to date, no information about the specific mechanisms of interaction with the host is available. The first health-promoting activities studied in these job was the oxalate-degrading activity. Oxalic acid occurs extensively in nature and plays diverse roles, especially in pathological processes. Due to its highly oxidizing effects, hyper absorption or abnormal synthesis of oxalate can cause serious acute disorders in mammals and be lethal in extreme cases. Intestinal oxalate-degrading bacteria could therefore be pivotal in maintaining oxalate homeostasis, reducing the risk of kidney stone development. In this study, the oxalate-degrading activity of 14 bifidobacterial strains was measured by a capillary electrophoresis technique. The oxc gene, encoding oxalyl-CoA decarboxylase, a key enzyme in oxalate catabolism, was isolated by probing a genomic library of B. animalis subsp. lactis BI07, which was one of the most active strains in the preliminary screening. The genetic and transcriptional organization of oxc flanking regions was determined, unravelling the presence of other two independently transcribed open reading frames, potentially responsible for B. animalis subsp. lactis ability to degrade oxalate. Transcriptional analysis, using real-time quantitative reverse transcription PCR, revealed that these genes were highly induced in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 4.5. Acidic conditions were also a prerequisite for a significant oxalate degradation rate, which dramatically increased in oxalate pre-adapted cells, as demonstrated in fermentation experiments with different pH-controlled batch cultures. These findings provide new insights in the characterization of oxalate-degrading probiotic bacteria and may support the use of B. animalis subsp. lactis as a promising adjunct for the prophylaxis and management of oxalate-related kidney disease. In order to provide some insight into the molecular mechanisms involved in the interaction with the host, in the second part of the job, we investigated whether Bifidobacterium was able to capture human plasminogen on the cell surface. The binding of human plasminogen to Bifidobacterium was dependent on lysine residues of surface protein receptors. By using a proteomic approach, we identified six putative plasminogen-binding proteins in the cell wall fraction of three strain of Bifidobacterium. The data suggest that plasminogen binding to Bifidobactrium is due to the concerted action of a number of proteins located on the bacterial cell surface, some of which are highly conserved cytoplasmic proteins which have other essential cellular functions. Our findings represent a step forward in understanding the mechanisms involved in the Bifidobacterium-host interaction. In these job w studied a new approach based on to MALDI-TOF MS to measure the interaction between entire bacterial cells and host molecular target. MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight)—mass spectrometry has been applied, for the first time, in the investigation of whole Bifidobacterium cells-host target proteins interaction. In particular, by means of this technique, a dose dependent human plasminogen-binding activity has been shown for Bifidobacterium. The involvement of lysine binding sites on the bacterial cell surface has been proved. The obtained result was found to be consistent with that from well-established standard methodologies, thus the proposed MALDI-TOF approach has the potential to enter as a fast alternative method in the field of biorecognition studies involving in bacterial cells and proteins of human origin.