395 resultados para Interrogation
Resumo:
This thesis describes a detailed study of advanced fibre grating devices using Bragg (FBG) and long-period (LPG) structures and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below. One of the most important contributions from the research work presented in this thesis is a systematic theoretical study of many distinguishing structures of fibre gratings. Starting from the Maxwell equations, the coupled-mode equations for both FBG and LPG were derived and the mode-overlap factor was analytically discussed. Computing simulation programmes utilising matrix transform method based on the models built upon the coupled-mode equations were developed, enabling simulations of spectral response in terms of reflectivity, bandwidth, sidelobes and dispersion of gratings of different structures including uniform and chirped, phase-shifted, Moiré, sampled Bragg gratings, phase-shifted and cascaded long-period gratings. Although the majority of these structures were modelled numerically, analytical expressions for some complex structures were developed with a clear physical picture. Several apodisation functions were proposed to improve sidelobe suppression, which guided effective production of practical devices for demanding applications. Fibre grating fabrication is the other major part involved in the Ph.D. programme. Both the holographic and scan-phase-mask methods were employed to fabricate Bragg and long-period gratings of standard and novel structures. Significant improvements were particularly made in the scan-phase-mask method to enable the arbitrarily tailoring of the spectral response of grating devices. Two specific techniques - slow-shifting and fast-dithering the phase-mask implemented by a computer controlled piezo - were developed to write high quality phase-shifted, sampled and apodised gratings. A large number of LabVIEW programmes were constructed to implement standard and novel fabrication techniques. In addition, some fundamental studies of grating growth in relating to the UV exposure and hydrogenation induced index were carried out. In particular, Type IIa gratings in non-hydrogenated B/Ge co-doped fibres and a re-generated grating in hydrogenated B/Ge fibre were investigated, showing a significant observation of thermal coefficient reduction. Optical sensing applications utilising fibre grating devices form the third major part of the research work presented in this thesis. Several experiments of novel sensing and sensing-demodulating were implemented. For the first time, an intensity and wavelength dual-coding interrogation technique was demonstrated showing significantly enhanced capacity of grating sensor multiplexing. Based on the mode-splitting measurement, instead of using conventional wavelength-shifting detection technique, successful demonstrations were also made for optical load and bend sensing of ultra-high sensitivity employing LPG structures. In addition, edge-filters and low-loss high-rejection bandpass filters of 50nm stop-band were fabricated for application in optical sensing and high-speed telecommunication systems
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT This thesis describes a detailed study of advanced optical fibre sensors based on fibre Bragg grating (FBG), tilted fibre Bragg grating (TFBG) and long-period grating (LPG) and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below.The most important contribution from the research work presented in this thesis is the implementation of in-fibre grating based refractive index (RI) sensors, which could be the good candidates for optical biochemical sensing. Several fibre grating based RI sensors have been proposed and demonstrated by exploring novel grating structures and different fibre types, and employing efficient hydrofluoric acid etching technique to enhance the RI sensitivity. All the RI devices discussed in this thesis have been used to measure the concentration of sugar solution to simulate the chemical sensing. Efforts have also been made to overcome the RI-temperature cross-sensitivity for practical application. The demonstrated in-fibre grating based RI sensors could be further implemented as potential optical biosensors by applying bioactive coatings to realise high bio-sensitivity and bio-selectivity.Another major contribution of this thesis is the application of TFBGs. A prototype interrogation system by the use of TFBG with CCD-array was implemented to perform wavelength division multiplexing (WDM) interrogation around 800nm wavelength region with the advantages of compact size, fast detection speed and low-cost. As a high light, a novel in-fibre twist sensors utilising strong polarisation dependant coupling behaviour of an 81°-TFBG was presented to demonstrate the high torsion sensitivity and capability of direction recognition.
Resumo:
In this thesis, I describe studies on fabrication, spectral characteristics and applications of tilted fibre gratings (TFGs) with small, large and 45° tilted structures and novel developments in fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in normal silica and mid-infrared (mid-IR) glass fibres using near-IR femtosecond laser. One of the major contributions presented in this thesis is the systematic investigation of structures, inscription methods and spectral, polarisation dependent loss (PDL) and thermal characteristics of TFGs with small (<45°), large (>45°) and 45° tilted structures. I have experimentally characterised TFGs, obtaining relationships between the radiation angle, central wavelength of the radiation profile, Bragg resonance and the tilt angle, which are consistent with theoretical simulation based on the mode-coupling theory. Furthermore, thermal responses have been measured for these three types of TFGs, showing the transmission spectra of large and 45° TFGs are insensitive to the temperature change, unlike the normal and small angle tilted FBGs. Based on the distinctive optical properties, TFGs have been developed into interrogation system and sensors, which form the other significant contributions of the work presented in this thesis. The 10°-TFG based 800nm WDM interrogation system can function not just as an in-fibre spectrum analyser but also possess refractive index sensing capability. By utilising the unique polarisation properties, the 81 °-TFG based sensors are capable of sensing the transverse loading and twisting with sensitivities of 2.04pW/(kg/m) and 145.90pW/rad, repectively. The final but the most important contribution from the research work presented in this thesis is the development of novel grating inscription techniques using near-IR femtosecond laser. A number of LPGs and FBGs were successfully fabricated in normal silica and mid-IR glass fibres using point-by-point and phase-mask techniques. LPGs and 1st and 2nd order FBGs have been fabricated in these mid-IR glass fibres showing resonances covering the wavelength range from 1200 to 1700nm with the strengths up to 13dB. In addition, the thermal and strain sensitivities of these gratings have been systematically investigated. All the results from these initial but systematic works will provide useful function characteristics information for future fibre grating based devices and applications in mid-IR range.
Resumo:
Initially the study focussed on the factors affecting the ability of the police to solve crimes. An analysts of over twenty thousand police deployments revealed the proportion of time spent investigating crime contrasted to its perceived importance and the time spent on other activities. The fictional portrayal of skills believed important in successful crime investigation were identified and compared to the professional training and 'taught skills’ given to police and detectives. Police practitioners and middle management provided views on the skills needed to solve crimes. The relative importance of the forensic science role. fingerprint examination and interrogation skills were contrasted with changes in police methods resulting from the Police and Criminal Evidence Act and its effect on confessions. The study revealed that existing police systems for investigating crime excluding specifically cases of murder and other serious offences, were unsystematic, uncoordinated, unsupervised and unproductive in using police resources. The study examined relevant and contemporary research in the United States and United Kingdom and with organisational support introduced an experimental system of data capture and initial investigation with features of case screening and management. Preliminary results indicated increases in the collection of essential information and more effective use of investigative resources. In the managerial framework within which this study has been conducted, research has been undertaken in the knowledge elicitation area as a basis for an expert system of crime investigation and the potential organisational benefits of utilising the Lap computer in the first stages of data gathering and investigation. The conclusions demonstrate the need for a totally integrated system of criminal investigation with emphasis on an organisational rather than individual response. In some areas the evidence produced is sufficient to warrant replication, in others additional research is needed to further explore other concepts and proposed systems pioneered by this study.
Resumo:
The subject of investigation of the present research is the use of smart hydrogels with fibre optic sensor technology. The aim was to develop a costeffective sensor platform for the detection of water in hydrocarbon media, and of dissolved inorganic analytes, namely potassium, calcium and aluminium. The fibre optic sensors in this work depend upon the use of hydrogels to either entrap chemotropic agents or to respond to external environmental changes, by changing their inherent properties, such as refractive index (RI). A review of current fibre optic technology for sensing outlined that the main principles utilised are either the measurement of signal loss or a change in wavelength of the light transmitted through the system. The signal loss principle relies on changing the conditions required for total internal reflection to occur. Hydrogels are cross-linked polymer networks that swell but do not dissolve in aqueous environments. Smart hydrogels are synthetic materials that exhibit additional properties to those inherent in their structure. In order to control the non-inherent properties, the hydrogels were fabricated with the addition of chemotropic agents. For the detection of water, hydrogels of low refractive index were synthesized using fluorinated monomers. Sulfonated monomers were used for their extreme hydrophilicity as a means of water sensing through an RI change. To enhance the sensing capability of the hydrogel, chemotropic agents, such as pH indicators and cobalt salts, were used. The system comprises of the smart hydrogel coated onto an exposed section of the fibre optic core, connected to the interrogation system measuring the difference in the signal. Information obtained was analysed using a purpose designed software. The developed sensor platform showed that an increase in the target species caused an increase in the signal lost from the sensor system, allowing for a detection of the target species. The system has potential applications in areas such as clinical point of care, water detection in fuels and the detection of dissolved ions in the water industry.
Resumo:
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, d lambda/dR from similar to 7-nm m to similar to 9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We experimentally demonstrated a highly sensitive twist sensor system based on a 45° and an 81° tilted fibre grating (TFG). The 81°-TFG has a set of dual-peaks that are due to the birefringence induced by its extremely tilted structure. When the 81°-TFG subjected to twist, the coupling to the two peaks would interchange from each other, providing a mechanism to measure and monitor the twist. We have investigated the performance of the sensor system by three interrogation methods (spectral, power-measurement and voltage-measurement). The experimental results clearly show that the 81°-TFG and the 45°-TFG could be combined forming a full fibre twist sensor system capable of not just measuring the magnitude but also recognising the direction of the applied twist.
Resumo:
This thesis presents the design, fabrication and testing of novel grating based Optical Fibre Sensor (OFS) systems being interrogated using “off the shelf” interrogation systems, with the eventual development of marketable commercial systems at the forefront of the research. Both in the industrial weighing and aerospace industries, there has been a drive to investigate the feasibility of using optical fibre sensors being deployed where traditionally their electrical or mechanical counterparts would traditionally have been. Already, in the industrial weighing industry, commercial operators are deploying OFS-based Weigh-In-Motion (WIM) systems. Likewise, in the aerospace industry, OFS have been deployed to monitor such parameters as load history, impact detection, structural damage, overload detection, centre of gravity and the determination of blade shape. Based on the intrinsic properties of fibre Bragg gratings (FBGs) and Long Period Fibre Gratings (LPFGs), a number of novel OFS-based systems have been realised. Experimental work has shown that in the case of static industrial weighing, FBGs can be integrated with current commercial products and used to detect applied loads. The work has also shown that embedding FBGs in e-glass, to form a sensing patch, can result in said patches being bonded to rail track, forming the basis of an FBG-based WIM system. The results obtained have been sufficiently encouraging to the industrial partner that this work will be progressed beyond the scope of the work presented in this thesis. Likewise, and to the best of the author’s knowledge, a novel Bragg grating based systems for aircraft fuel parameter sensing has been presented. FBG-based pressure sensors have been shown to demonstrate good sensitivity, linearity and repeatability, whilst LPFG-based systems have demonstrated a far greater sensitivity when compared to FBGs, as well the advantage of being potentially able to detect causes of fuel adulteration based on their sensitivity to refractive index (RI). In the case of the LPFG-based system, considerable work remains to be done on the mechanical strengthening to improve its survivability in a live aircraft fuel tank environment. The FBG system has already been developed to an aerospace compliant prototype and is due to be tested at the fuel testing facility based at Airbus, Filton, UK. It is envisaged by the author that in both application areas, continued research in this area will lead to the eventual development of marketable commercial products.
Resumo:
Fibre Bragg grating sensors are usually expensive to interrogate, and part of this thesis describes a low cost interrogation system for a group of such devices which can be indefinitely scaled up for larger numbers of sensors without requiring an increasingly broadband light source. It incorporates inherent temperature correction and also uses fewer photodiodes than the number or sensors it interrogates, using neural networks to interpret the photodiode data. A novel sensing arrangement using an FBG grating encapsulated in a silicone polymer is presented. This sensor is capable of distinguishing between different surface profiles with ridges 0.5 to 1mm deep and 2mm pitch and either triangular, semicircular or square in profile. Early experiments using neural networks to distinguish between these profiles are also presented. The potential applications for tactile sensing systems incorporating fibre Bragg gratings and neural networks are explored.
Resumo:
The fabrication of in-fibre Bragg gratings (FBGs) and their application as sensors is reported. The strain and temperature characteristic results for a number of chirped and uniform gratings written into three different host fibres are presented. The static and dynamic temperature response of a commercially available temperature compensated grating is reported. A five sensor wavelength division multiplexed fibre Bragg grating strain measurement system with an interrogation rate of 25 Hz and resolution of 10 was constructed. The results from this system are presented. A novel chirped FBG interrogation method was implemented in both the 1.3 and 1.5 m telecommunication windows. Several single and dual strain sensor systems, employing this method, were constructed and the results obtained from each are reported and discussed. These systems are particularly suitable for the measurement of large strain. The results from a system measuring up to 12 m and with a potential measurement range of 30 m are reported. This technique is also shown to give an obtainable resolution of 20 over a measurement range of 5 000 for a dual sensor system. These systems are simple, robust, passive and easy to implement. They offer low cost, high speed and, in the case of multiple sensors, truly simultaneous interrogation. These advantages make this technique ideal for strain sensing in SMART structures. Systems based on this method have been installed in the masts of four superyachts. A system, based on this technique, is currently being developed for the measurement of acoustic waves in carbon composite panels. The results from an alternative method for interrogating uniform FBG sensors are also discussed. Interrogation of the gratings was facilitated by a specifically written asymmetric grating which had a 15 nm long linearly sloped spectral edge. This technique was employed to interrogate a single sensor over a measurement range of 6 m and two sensors over a range of 4.5 me. The results obtained indicated achievable resolutions of 47 and 38 respectively.
Resumo:
This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 µm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.
Resumo:
A new type of fibre-optic biochemical concentration sensor based on a polymer optical fibre Bragg grating (POFBG) is proposed. The wavelength of the POFBG varies as a function of analyte concentration. The feasibility of this sensing concept is demonstrated by a saline concentration sensor. When polymer fibre is placed in a water based solution the process of osmosis takes place in this water-fibre system. An osmotic pressure which is proportional to the solution concentration, will apply to the fibre in addition to the hydraulic pressure. It tends to drive the water content out of the fibre and into the surrounding solution. When the surrounding solution concentration increases the osmotic pressure increases to drive the water content out of the fibre, consequently increasing the differential hydraulic pressure and reducing the POFBG wavelength. This process will stop once there is a balance between the osmotic pressure and the differential hydraulic pressure. Similarly when the solution concentration decreases the osmotic pressure decreases, leading to a dominant differential hydraulic pressure which drives the water into the fibre till a new pressure balance is established. Therefore the water content in the polymer fibre - and consequently the POFBG wavelength - depends directly on the solution concentration. A POFBG wavelength change of 0.9 nm was measured for saline concentration varying from 0 to 22%. For a wavelength interrogation system with a resolution of 1 pm, a measurement of solution concentration of 0.03% can be expected.
Resumo:
Latterly the psychology of sexualities has diversified. There has been increased engagement with queer theory and a heightened focus on sexual practices alongside continued interrogation of heteronormativity via analyses of talk-in-interaction. In this article, I offer an argument for juxtaposing the incongruent in order to further interrogate manifestations of heterosexism in lesbian, gay, bisexual, trans and queer (LGBTQ) people’s lives. In this case, accounts of others’ reactions to a happy event and to a sad experience. By drawing on two contrasting data corpuses – 124 people planning or in a civil partnership and 60 women who had experienced pregnancy loss – there is increased potential for understanding variation in ‘normative’ and/or heteronormative interpretations of LGBTQ lives. I suggest that, despite significant legal and structural gains for LGBTQ communities in a number of Western countries in recent years, and lively internal debates within the psychology of sexualities field, critical examination of manifestations of heterosexism should remain a central focus.
Resumo:
Background: Screening for congenital heart defects (CHDs) relies on antenatal ultrasound and postnatal clinical examination; however, life-threatening defects often go undetected. Objective: To determine the accuracy, acceptability and cost-effectiveness of pulse oximetry as a screening test for CHDs in newborn infants. Design: A test accuracy study determined the accuracy of pulse oximetry. Acceptability of testing to parents was evaluated through a questionnaire, and to staff through focus groups. A decision-analytic model was constructed to assess cost-effectiveness. Setting: Six UK maternity units. Participants: These were 20,055 asymptomatic newborns at = 35 weeks’ gestation, their mothers and health-care staff. Interventions: Pulse oximetry was performed prior to discharge from hospital and the results of this index test were compared with a composite reference standard (echocardiography, clinical follow-up and follow-up through interrogation of clinical databases). Main outcome measures: Detection of major CHDs – defined as causing death or requiring invasive intervention up to 12 months of age (subdivided into critical CHDs causing death or intervention before 28 days, and serious CHDs causing death or intervention between 1 and 12 months of age); acceptability of testing to parents and staff; and the cost-effectiveness in terms of cost per timely diagnosis. Results: Fifty-three of the 20,055 babies screened had a major CHD (24 critical and 29 serious), a prevalence of 2.6 per 1000 live births. Pulse oximetry had a sensitivity of 75.0% [95% confidence interval (CI) 53.3% to 90.2%] for critical cases and 49.1% (95% CI 35.1% to 63.2%) for all major CHDs. When 23 cases were excluded, in which a CHD was already suspected following antenatal ultrasound, pulse oximetry had a sensitivity of 58.3% (95% CI 27.7% to 84.8%) for critical cases (12 babies) and 28.6% (95% CI 14.6% to 46.3%) for all major CHDs (35 babies). False-positive (FP) results occurred in 1 in 119 babies (0.84%) without major CHDs (specificity 99.2%, 95% CI 99.0% to 99.3%). However, of the 169 FPs, there were six cases of significant but not major CHDs and 40 cases of respiratory or infective illness requiring medical intervention. The prevalence of major CHDs in babies with normal pulse oximetry was 1.4 (95% CI 0.9 to 2.0) per 1000 live births, as 27 babies with major CHDs (6 critical and 21 serious) were missed. Parent and staff participants were predominantly satisfied with screening, perceiving it as an important test to detect ill babies. There was no evidence that mothers given FP results were more anxious after participating than those given true-negative results, although they were less satisfied with the test. White British/Irish mothers were more likely to participate in the study, and were less anxious and more satisfied than those of other ethnicities. The incremental cost-effectiveness ratio of pulse oximetry plus clinical examination compared with examination alone is approximately £24,900 per timely diagnosis in a population in which antenatal screening for CHDs already exists. Conclusions: Pulse oximetry is a simple, safe, feasible test that is acceptable to parents and staff and adds value to existing screening. It is likely to identify cases of critical CHDs that would otherwise go undetected. It is also likely to be cost-effective given current acceptable thresholds. The detection of other pathologies, such as significant CHDs and respiratory and infective illnesses, is an additional advantage. Other pulse oximetry techniques, such as perfusion index, may enhance detection of aortic obstructive lesions.
Resumo:
Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.