906 resultados para International and Area Studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl-2 yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pro-Gly segments in peptides and proteins are prone to adopt the 0-turn conformation. This paper reports experimental data for the presence of this conformation in a linear tripeptide N-acetyl-L-prolylglycyl-L-phenylalanineb oth in the solid state and in solution. X-ray diffraction data on the tripeptide crystal show that it exists in the type I1 0-turn conformation. CD and proton NMR data show that this conformation persists in trifluoroethanol and methanol solutions in equilibrium with the nonhydrogen-bonded structures. Isomerization around the acetyl-prolyl bond is seen to take place in dimethyl sulfoxide solutions of the tripeptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irreversible, Pressure induced, quasicrystal-to-crystal transitions are observed for the first time in melt spun alloys at 4.9 GPa for Al 78 Mn22 and 9.3 GPa for Al86 Mn14 by monitoring the electrical resistivities of these alloys as a function of pressure. Electron diffraction and x-ray measurements are used to show that these quasicrystalline phases have icosohedral point group symmetry. The crystalline phases which appear at high pressures are identified as h.c.p. for Al78 Mn22 and orthorhombic for Al86 Mn14.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methanol adsorbs molecularly on the surfaces of Cu–Pd alloys at low temperatures and transforms to CH3O or CO on warming, depending upon the alloy composition. On oxygen presorbed Cu–Pd alloy surfaces, adsorption of methanol gives rise to H2O and H2CO. CH3OH adsorbed molecularly on the surfaces of Cu–Au alloys and CH3O is formed only at relatively high temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is a disease of the arteries; its characteristic features include chronic inflammation, extra- and intracellular lipid accumulation, extracellular matrix remodeling, and an increase in extracellular matrix volume. The underlying mechanisms in the pathogenesis of advanced atherosclerotic plaques, that involve local acidity of the extracellular fluid, are still incompletely understood. In this thesis project, my co-workers and I studied the different mechanisms by which local extracellular acidity could promote accumulation of the atherogenic apolipoprotein B-100 (apoB-100)-containing plasma lipoprotein particles in the inner layer of the arterial wall, the intima. We found that lipolysis of atherogenic apoB-100-containing plasma lipoprotein particles (LDL, IDL, and sVLDL) by the secretory phospholipase A2 group V (sPLA2-V) enzyme, was increased at acidic pH. Also, the binding of apoB-100-containing plasma lipoprotein particles to human aortic proteoglycans was dramatically enhanced at acidic pH. Additionally, lipolysis by sPLA2-V enzyme further increased this binding. Using proteoglycan-affinity chromatography, we found that sVLDL lipoprotein particles consist of populations, differing in their affinities toward proteoglycans. These populations also contained different amounts of apolipoprotein E (apoE) and apolipoprotein C-III (apoC-III); the amounts of apoC-III and apoE per particle were highest in the population with the lowest affinity toward proteoglycans. Since PLA2-modification of LDL particles has been shown to change their aggregation behavior, we also studied the effect of acidic pH on the monolayer structure covering lipoprotein particles after PLA2-induced hydrolysis. Using molecular dynamics simulations, we found that, in acidity, the monolayer is more tightly packed laterally; moreover, its spontaneous curvature is negative, suggesting that acidity may promote lipoprotein particles fusion. In addition to extracellular lipid accumulation, the apoB-100-containing plasma lipoprotein particles can be taken up by inflammatory cells, namely macrophages. Using radiolabeled lipoprotein particles and cell cultures, we showed that sPLA2-V-modification of LDL, IDL, and sVLDL lipoproteins particles, at neutral or acidic pH, increased their uptake by human monocyte-derived macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate the effects of Lactobacillus helveticus fermented milk (peptide milk) containing the casein-derived tripeptides Isoleucyl-prolyl-proline (Ile-Pro-Pro) and Valyl-prolyl-proline (Val-Pro-Pro) on blood pressure and vascular function in hypertensive subjects. The peptide milk lowered systolic and diastolic blood pressure in long-term use in hypertensive subjects when blood pressure was measured by using 24-hour ambulatory blood pressure measurement (ABPM). The blood pressure lowering effect was seen with the dose of 50 mg of tripeptides, and a tendency for lowering blood pressure was also observed when the dose was 5 mg. No adverse effects compared to the placebo group were reported or detected in laboratory analysis. The effect of the peptide milk on arterial stiffness was shown using two different methods, the ambulatory arterial stiffness index (AASI) and pulse wave analysis (PWA). According to the AASI, arterial stiffness was significantly reduced in the peptide milk group compared to the baseline level, but the difference was not significant compared to the placebo group. PWA showed that the peptide milk reduced arterial stiffness significantly compared to the placebo group. Endothelium-independent relaxation (nitroglycerin) and endothelium-dependent relaxation (salbutamol) did not differ between the groups. The blood pressure lowering mechanisms of the tripeptides and the kinetics of Ile-Pro-Pro were investigated using spontaneously hypertensive rats (SHR) and Sprague-Dawley rats. Previous studies have suggested that the blood pressure lowering effect of the tripeptides Ile-Pro-Pro and Val-Pro-Pro is based on angiotensin-converting enzyme inhibition, but the present findings did not agree with these previous studies. It was shown in SHR that calcium, potassium and magnesium may also have an important role in attenuating the development of hypertension as part of the peptide milk effect. In addition, the present study suggests indirectly that improved endothelial nitric oxide release capacity is not the mechanism by which peptide milk mediates its favourable circulatory effects. The kinetics of Ile-Pro-Pro were studied using adult Sprague-Dawley rats. The results showed that orally administered Ile-Pro-Pro is absorbed at least partly intact from the gastrointestinal tract. Radiolabelled Ile-Pro-Pro was distributed in different tissues and considerable radioactivity levels were found in tissues related to the renin-angiotensin system (RAS), adrenals, aorta and kidneys. Ile-Pro-Pro does not bind to plasma proteins, and therefore it is possible that its blood pressure lowering effect is mediated by free Ile-Pro-Pro. In conclusion, consumption of the peptide milk lowers blood pressure and reduces arterial stiffness in hypertensive subjects. Ile-Pro-Pro can be absorbed partly intact from the gastrointestinal tract and might accumulate in tissues related to the RAS. The precise blood pressure lowering mechanism of peptide milk remains to be studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ESR and optical studies of phosphomolybdate and phosphotungstate glasses are discussed. Both the ESR and optical results indicate that molybdenum or tungsten ions are present in distorted octahedral environments in these glasses. In addition, ESR spectra of Mo5+ and W5+ ions show that the d electrons are localized on molybdenum and tungsten sites respectively. The variation of gperpendicular and gshort parallel values has been examined using appropriate structural models of these glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autoimmune diseases affect 5 % of the population and come in many forms, such as diabetes, rheumatoid arthritis and MS. However, how and why autoimmune diseases arise are not yet fully resolved. In this thesis, the onset of autoimmunity was investigated using both patient samples and a mouse model of autoimmunity. Autoimmune diseases are usually complex, due to a number of different causative genes and environmental factors. However, a few monogenic autoimmune diseases have been described, which are caused by mutations in only one gene per disease. One of such disease is called APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) and is enriched in the Finnish population. The causative gene behind APECED is named AIRE from AutoImmune REgulator. How malfunction of just one gene product can cause the multitude of disease components found in APECED is not yet resolved. This thesis sought out to find out more about the functions of AIRE, in order to reveal why APECED and other autoimmune diseases arise and what goes wrong? Usually, immune cells are taught to distinguish between self and non-self during their development. That way, immune cells can fight off bacteria and microbes while leaving the tissues and organs of the host organism itself unharmed. In APECED, the development of immune cells called αβ T cells is incomplete. The cells are not able to fully distinguish between self and non-self. This leads to autodestruction of self tissues and autoimmune disease. One of the achievements of this thesis was the finding that the development of another set of T cells called γδ T cells is not affected by AIRE in mice or in men. Instead, we found that another type of immune cell important in tolerance, called the dendritic cell is defective in APECED patients and is not able to respond to microbial stimulus in a normal fashion. Finally, we studied Aire-deficient mice and found that autoantibodies expressed in the mice were not targeted against the same molecules as those found in APECED patients. This indicates differences in the autoimmune pathology in mice and men. More work is still required before we understand the mechanisms of tolerance and autoimmunity well enough to be able to cure APECED, let alone the more complex autoimmune diseases. Yet altogether, the findings of this thesis work bring us one step closer to finding out why and how APECED and common autoimmune diseases arise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface segregation of Ge is seen in the Cu-5at%Ge alloy with an activation enthalpy equal to 17 kJ/mol. Oxidation of the alloy in the temperature range 400 to 600 K shows the formation of Cu2O and GeO which on further heating in vacuum at 650 K converts to GeO2 with the reduction of Cu2O to Cu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray photoelectron and Auger spectroscopic techniques have been employed to study surface segregation and oxidation of Cu-1 at%Sn, Cu-9at%Pd and Cu-25at%Pd alloys. Both Cu-Pd(9%) and Cu-Pd(25%) alloys show segregation of Cu when heated above 500 K. The Pd concentration was reduced by 50% at 750 K compared to the bulk composition; the enthalpy of segregation of Cu is around - 6kJ/mol. Sn segregation is seen from 470 to 650 K in the Cu-Sn(1%) alloy, and a saturation plateau of Sn concentration above 650 K is observed. Surface oxidation of Cu-Sn(1%) and Cu-Pd(9%) alloys at 500 K showed the formation of Cu2O on the surface with total suppression of Sn or Pd on the respective alloy surfaces. On vacuum annealing the oxidised Cu-Sn alloy surface at 550 K, a displacement reaction 2Cu2O+Sn→4Cu+SnO2 was observed. However, under similar annealing of the oxidised Cu-Pd(9%) alloy surface at 500 K, oxide oxygen was totally desorbed leaving the Cu-Pd alloy surface clean. In the case of the Cu-Pd(25%) alloy, only dissociatively chemisorbed oxygen was seen at 500 K which desorbed at the same temperature. Oxygen spill-over from copper to palladium is suggested as the mechanism of oxygen desorption from the oxidised Cu-Pd alloy surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface oxidation of Co has been investigated at different temperatures in the 300–600 K range at oxygen exposures upto 106 L by XPES and AES techniques. In the XPES, both the valence band and core level bands have been employed to monitor the oxidation while in the AES, metal Auger intensity ratios as well as O(KLL)/Co(L23M45M45) ratios have been examined. Only CoO is formed on the surface at high oxygen exposures at and above 500 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.