991 resultados para Interferon-gamma


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Occupational exposure to metals such as cobalt and beryllium represents a risk factor for respiratory health and can cause immune-mediated diseases. However, the way they act may be different. We show here that the two metals have a divergent effect on peripheral T lymphocytes and monocytes: BeSO(4) induces cell death in monocytes but not in T lymphocytes, which instead respond by producing Interferon gamma (IFN-γ); conversely, CoCl(2) induces apoptosis in T lymphocytes but not in monocytes. Interestingly, both metals induce p53 overexpression but with a dramatic different outcome. This is because the effect of p53 in CoCl(2)-treated monocytes is counteracted by the antiapoptotic activity of cytoplasmic p21(Cip1/WAF1), the activation of nuclear factor κB, and the inflammasome danger signaling pathway leading to the production of proinflammatory cytokines. However, CoCl(2)-treated monocytes do not fully differentiate into macrophage or dendritic cells, as inferred by the lack of expression of CD16 and CD83, respectively. Furthermore, the expression of HLA-class II molecules, as well as the capability of capturing and presenting the antigens, decreased with time. In conclusion, cobalt keeps monocytes in a partially activated, proinflammatory state that can contribute to some of the pathologies associated with the exposure to this metal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymorphonuclear neutrophils (PMN) are key components of the inflammatory response contributing to the development of pathogen-specific immune responses. Following infection with Leishmania major, neutrophils are recruited within hours to the site of parasite inoculation. C57BL/6 mice are resistant to infection, and BALB/c mice are susceptible to infection, developing unhealing, inflammatory lesions. In this report, we investigated the expression of cell surface integrins, TLRs, and the secretion of immunomodulatory cytokines by PMN of both strains of mice, in response to infection with L. major. The parasite was shown to induce CD49d expression in BALB/c-inflammatory PMN, and expression of CD49d remained at basal levels in C57BL/6 PMN. Equally high levels of CD11b were expressed on PMN from both strains. In response to L. major infection, the levels of TLR2, TLR7, and TLR9 mRNA were significantly higher in C57BL/6 than in BALB/c PMN. C57BL/6 PMN secreted biologically active IL-12p70 and IL-10. In contrast, L. major-infected BALB/c PMN transcribed and secreted high levels of IL-12p40 but did not secrete biologically active IL-12p70. Furthermore, IL-12p40 was shown not to associate with IL-23 p19 but formed IL-12p40 homodimers with inhibitory activity. No IL-10 was secreted by BALB/c PMN. Thus, following infection with L. major, in C57BL/6 mice, PMN could constitute one of the earliest sources of IL-12, and in BALB/c mice, secretion of IL-12p40 could contribute to impaired, early IL-12 signaling. These distinct PMN phenotypes may thus influence the development of L. major-specific immune response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large percentage of healthy individuals (50-90%) is chronically infected with Cytomegalovirus (CMV). Over the past few years, several techniques were developed in order to monitor CMV-specific T-cell responses. In addition to the identification of antigen-specific T cells with peptide-loaded MHC complexes, most of the current strategies to identify CMV-specific T cells are centered on the assessment of the functions of memory T cells including their ability to mediate effector function, to proliferate or to secrete cytokines following antigen-specific stimulation. The investigation of these functions has allowed the characterization of the CMV-specific T-cell responses that are present during different phases of the infection. Furthermore, it has also been shown that the combination of virus-specific CD4 and CD8 T-cell responses are critical components of the immune response in the control of virus replication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The respective production of specific immunoglobulin (Ig)G2a or IgG1 within 5 d of primary immunization with Swiss type mouse mammary tumor virus [MMTV(SW)] or haptenated protein provides a model for the development of T helper 1 (Th1) and Th2 responses. The antibody-producing cells arise from cognate T cell B cell interaction, revealed by the respective induction of Cgamma2a and Cgamma1 switch transcript production, on the third day after immunization. T cell proliferation and upregulation of mRNA for interferon gamma in response to MMTV(SW) and interleukin 4 in response to haptenated protein also starts during this day. It follows that there is minimal delay in these responses between T cell priming and the onset of cognate interaction between T and B cells leading to class switching and exponential growth. The Th1 or Th2 profile is at least partially established at the time of the first cognate T cell interaction with B cells in the T zone. The addition of killed Bordetella pertussis to the hapten-protein induces nonhapten-specific IgG2a and IgG1 plasma cells, whereas the anti-hapten response continues to be IgG1 dominated. This indicates that a Th2 response to hapten-protein can proceed in a node where there is substantial Th1 activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been recently shown (Seddiki, N., B. Santner-Nanan, J. Martinson, J. Zaunders, S. Sasson, A. Landay, M. Solomon, W. Selby, S.I. Alexander, R. Nanan, et al. 2006. J. Exp. Med. 203:1693-1700.) that the expression of interleukin (IL) 7 receptor (R) alpha discriminates between two distinct CD4 T cell populations, both characterized by the expression of CD25, i.e. CD4 regulatory T (T reg) cells and activated CD4 T cells. T reg cells express low levels of IL-7Ralpha, whereas activated CD4 T cells are characterized by the expression of IL-7Ralpha(high). We have investigated the distribution of these two CD4 T cell populations in 36 subjects after liver and kidney transplantation and in 45 healthy subjects. According to a previous study (Demirkiran, A., A. Kok, J. Kwekkeboom, H.J. Metselaar, H.W. Tilanus, and L.J. van der Laan. 2005. Transplant. Proc. 37:1194-1196.), we observed that the T reg CD25(+)CD45RO(+)IL-7Ralpha(low) cell population was reduced in transplant recipients (P < 0.00001). Interestingly, the CD4(+)CD25(+)CD45RO(+)IL-7Ralpha(high) cell population was significantly increased in stable transplant recipients compared with healthy subjects (P < 0.00001), and the expansion of this cell population was even greater in patients with documented humoral chronic rejection compared with stable transplant recipients (P < 0.0001). The expanded CD4(+)CD25(+)CD45RO(+)IL-7Ralpha(high) cell population contained allospecific CD4 T cells and secreted effector cytokines such as tumor necrosis factor alpha and interferon gamma, thus potentially contributing to the mechanisms of chronic rejection. More importantly, CD4(+)IL-7Ralpha(+)and CD25(+)IL-7Ralpha(+) cells were part of the T cell population infiltrating the allograft of patients with a documented diagnosis of chronic humoral rejection. These results indicate that the CD4(+)CD25(+)IL-7Ralpha(+) cell population may represent a valuable, sensitive, and specific marker to monitor allospecific CD4 T cell responses both in blood and in tissues after organ transplantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Preventive treatment may avoid future cases of tuberculosis among asylum seekers. The effectiveness of preventive treatment depends in large part on treatment completion. METHODS: In a prospective cohort study, asylum seekers of two of the Swiss Canton Vaud migration centres were screened with the Interferon Gamma Release Assay (IGRA). Those with a positive IGRA were referred for medical examination. Individuals with active or past tuberculosis were excluded. Preventive treatment was offered to all participants with positive IGRA but without active tuberculosis. The adherence was assessed during monthly follow-up. RESULTS: From a population of 393 adult migrants, 98 (24.9%) had a positive IGRA. Eleven did not attend the initial medical assessment. Of the 87 examined, eight presented with pulmonary disease (five of them received a full course of antituberculous therapy), two had a history of prior tuberculosis treatment and two had contraindications to treatment. Preventive treatment was offered to 75 individuals (4 months rifampicin in 74 and 9 months isoniazid in one), of whom 60 (80%) completed the treatment. CONCLUSIONS: The vulnerability and the volatility of this population make screening and observance of treatment difficult. It seems possible to obtain a high rate of completion using a short course of treatment in a closely monitored population living in stable housing conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early studies showed that the administration of the anti-inflammatory cytokine interleukin-10 (IL10) protects against permanent middle cerebral artery occlusion (MCAO) in mice. In this study, transgenic mice expressing murine IL10 (IL10T) directed by the major histocompatibility complex Ea promoter were produced and used to explore the effect of chronically increased IL10 levels on MCAO-related molecular mechanisms. IL10 was over-expressed in astrocytes, microglia, and endothelial brain cells in IL10T compared with wild type mice. Four days following MCAO, IL10T mice showed a 40% reduction in infarct size which was associated to significantly reduced levels of active caspase 3 compared with wild type mice. Under basal conditions, anti-inflammatory factors such as nerve growth factor and GSH were up-regulated and the pro-inflammatory cytokine IL1beta was down-regulated in the brain of IL10T animals. In addition, these mice displayed increased basal GSH levels in microglial and endothelial cells as well as a marked increase in manganese superoxide dismutase in endothelial lining blood vessels. Following ischemia, IL10T mice showed a marked reduction in pro-inflammatory cytokines, including tumor necrosis factor-alpha, interferon-gamma, and IL1beta. Our data indicate that constitutive IL10 over-expression is associated with a striking resistance to cerebral ischemia that may be attributed to changes in the basal redox properties of glial/endothelial cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interleukin-18 (IL-18) plays an important role in innate and acquired immunity, in particular against intracellular pathogens. However, little is known about the microbial factors that trigger IL-18 secretion by dendritic cells (DCs). To determine the influence of bacterial virulence factors on the activation and release of IL-18, we infected human monocyte-derived DCs with virulence mutants of the facultative intracellular pathogen Salmonella typhimurium. Our results show that infection by S. typhimurium causes caspase-1-dependent activation of IL-18 and triggers the release of IL-18 in human DCs. The secretion of IL-18 by the DCs was closely correlated with the ability of the S. typhimurium strains to induce apoptosis. We demonstrate that activation and release of IL-18 are blocked by mutations in the Salmonella sipB gene, which encodes a virulence factor that activates caspase-1 to induce apoptosis. These findings indicate that the activation and release of IL-18 induced by bacterial virulence factors may represent one component of innate immunity against the intracellular bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. METHODS: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. RESULTS: GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. CONCLUSION: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peroxynitrite induced in vitro a dose dependent toxicity on retinal pigmented epithelial (RPE) cells. Cell death was partially mediated by apoptosis as demonstrated by nuclear fragmentation and TdT-mediated dUTP nick-end labeling assay. Peroxynitrite-induced tyrosine nitration was revealed by immunocytochemistry, both in the cytoplasm and in the nucleus of the cells. Nitration was not observed in RPE cells, producing nitric oxide (NO) after stimulation by lipopolysacharide and interferon-g (IFN-gamma), suggesting that peroxynitrite was not formed in vitro in such conditions. Peroxynitrite could be responsible for the retinal damages observed in pathological conditions in which NO has been demonstrated to be involved. In this context, EGb761, identified as a free radical scavenger, was showed herein to protect RPE cells against peroxynitrite injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vitiligo, a skin disorder characterized by the spontaneous destruction of melanocytes, is believed to be of autoimmune origin. We investigated the presence and functionality of CD8(+) T-cells specific for the melanocyte-associated antigens Melan-A, gp100, tyrosinase, and TRP-2 in the blood of HLA-A2(+) vitiligo patients. We enumerated antigen-specific CD8(+) T cells by major histocompatibility complex multimer staining directly ex vivo, as well as after 9 days of in vitro stimulation and assessed IFN-gamma secretion by enzyme-linked immunospot (Elispot) assay. Tyrosinase-, gp100-, or TRP-2-specific CD8(+) T cells could not be identified in the peripheral blood of individuals with vitiligo. Although Melan-A-specific T cells were detectable at levels comparable to Flu-MP-specific T cells by multimer staining, these lymphocytes did not express the skin-homing receptor cutaneous lymphocyte antigen, were phenotypically naïve (CD45RA(+)), and were unresponsive in the IFN-gamma Elispot assay, suggesting that they are unlikely to be involved in the etiopathogenesis of vitiligo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Localization of human MHC class I-restricted T cell epitopes in the circumsporozoite (CS) protein of the human parasite Plasmodium falciparum is an important objective in the development of antimalarial vaccines. To this purpose, we synthesized a series of overlapping synthetic 20-mer peptides, spanning the entire sequence of the 7G8 CS molecule except for the central repeat B cell domain. The P.f.CS peptides were first tested for their ability to bind to the human MHC class I HLA-A2.1 molecule on T2, a human cell line. Subsequently, the use of a series of shorter peptide analogues allowed us to determine the optimal A2.1 binding sequence present in several of the 20-mers. Binding P.f.CS peptides were further tested for their capacity to activate PBL from HLA-A2.1+ immune donors living in a malaria-endemic area. Specific IFN-gamma production was detected in the supernatant of cultures of PBL from exposed individuals. Cytotoxic T cell lines and clones were derived from the PBL of one responder, and their activity was shown to be HLA-A2.1-restricted and specific for the peptide 334-342 of the CS protein. In addition, double transgenic HLA-A2.1 x human beta 2-microglobulin mice were immunized with peptide 1-10 of the CS protein. T cells derived from immune lymph nodes displayed a peptide-specific HLA-A2.1-restricted cytolytic activity after one in vitro stimulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The immediate response to skin injury is the release of inflammatory signals. It is shown here, by use of cultures of primary keratinocytes from wild-type and PPAR beta/delta(-/-) mice, that such signals including TNF-alpha and IFN-gamma, induce keratinocyte differentiation. This cytokine-dependent cell differentiation pathway requires up-regulation of the PPAR beta/delta gene via the stress-associated kinase cascade, which targets an AP-1 site in the PPAR beta/delta promoter. In addition, the pro-inflammatory cytokines also initiate the production of endogenous PPAR beta/delta ligands, which are essential for PPAR beta/delta activation and action. Activated PPAR beta/delta regulates the expression of genes associated with apoptosis resulting in an increased resistance of cultured keratinocytes to cell death. This effect is also observed in vivo during wound healing after an injury, as shown in dorsal skin of PPAR beta/delta(+/+) and PPAR beta/delta(+/-) mice.